Using the Multi-Terawatt Laser at the Laboratory for Laser Energetics to Generate a High-Yield, 0.5-MeV Deuteron Beam

A. Schwemmlein University of Rochester Laboratory for Laser Energetics 61st Annual Meeting of the American Physical Society Division of Plasma Physics Fort Lauderdale, FL 21–25 October 2019

Ti foils charged with atomic deuterium demonstrate the highest TNSA yields

- Ti foils were prepared as TNSA targets in two different batches
 - additional Ti was evaporated onto the Ti foils under 1 m Torr D₂
 - Ti foils was exposed to atomic D^0 created by a filament in 1 m Torr D_2
- Two equivalent batches were prepared using Au foils as substrates
- All foils were irradiated with the Multi-Terawatt (MTW) laser (10 ps, 25 J, 10¹⁸ W/cm²) to produce a deuteron beam
- A Thomson parabola ion spectrometer (TPIS) examined the abundance of different species in the TNSA beam and their energies
- Ti foils exposed to atomic D⁰ had higher TNSA yields compared to Ti evaporation on Ti foils in D₂ gas
- The beam energy and width does not depend on the yield (target)
- Au foils have less contaminants (C, O), but also lower yields compared to Ti foils loaded the same way

Future experiments will duplicate this process with tritium to produce a tritium beam.

ROCHESTER

Collaborators

W. U. Schröder,* C. Stoeckl, C. J. Forrest, J. P. Knauer, and S. P. Regan

University of Rochester Laboratory for Laser Energetics

*Department of Physics and Chemistry

The MTW laser accelerates deuterons from a deuterated Ti foil toward a Thomson parabola

The MTW laser at LLE provides a flexible mid-scale capability for nuclear science experiments

E16724a

LLE: Laser at the Laboratory for Laser Energetics

A total of 50 targets were shot, differing in backing material and deuterium exposure

Evaporate Ti onto Ti foil, 1 m Torr D ₂	Expose Ti to 1 m Torr D_2 with atomic D^0
0 nm (as received)	0 h (as received)
470 nm TiD ₂	22 h D ⁰
890 nm TiD ₂	46 h D ⁰
1000 nm TiD ₂	98 h D ⁰
1600 nm TiD ₂	193 h D ⁰

Each target has a different inventory of deuterons.

For each individual shot, the image plate is digitized and intensity is binned along each trace to obtain a spectrum

Ti with 46-h D⁰ exposure produced an intense, 1 ± 0.5 -MeV deuteron beam.

TiD₂-loaded targets show and increase in deuteron yield and a decrease in carbon yield with increasing thickness

Relative abundances of C-ions follow expectations from atomic physics, \rightarrow the extrapolated C⁶⁺ (D+ background) should be low.

D⁰ loaded targets show no clear trend between any species yield and exposure time, steady state seems to be reached quickly

 D^0 loaded targets show 3× higher yields than TiD₂ targets.

Ti targets show no clear trend between the mean beam energy and surface finish

Ti foils charged with atomic deuterium demonstrate the highest TNSA yields

- Ti foils were prepared as TNSA targets in two different batches
 - additional Ti was evaporated onto the Ti foils under 1 m Torr D₂
 - Ti foils was exposed to atomic D^0 created by a filament in 1 m Torr D_2
- Two equivalent batches were prepared using Au foils as substrates
- All foils were irradiated with the Multi-Terawatt (MTW) laser (10 ps, 25 J, 10¹⁸ W/cm²) to produce a deuteron beam
- A Thomson parabola ion spectrometer (TPIS) examined the abundance of different species in the TNSA beam and their energies
- Ti foils exposed to atomic D⁰ had higher TNSA yields compared to Ti evaporation on Ti foils in D₂ gas
- The beam energy and width does not depend on the yield (target)
- Au foils have less contaminants (C, O), but also lower yields compared to Ti foils loaded the same way

Future experiments will duplicate this process with tritium to produce a tritium beam.

ROCHESTER

Backup

Ion species analysis for the gold foils

D⁰ loaded targets show a maximum deuteron yield after 46-h; exposure, all C-ions are suppressed and follow no clear trend. TiD_2 loaded targets show a very low deuteron yield hidden in the C-ions noise. Potentially, the TiD_2 does not bind to Au.

Beam analysis for the gold foils

D^o loaded targets show no clear trend between the mean beam energy or width and the surface finish.

TiD₂ loaded targets had a too low deuteron signal to yield a meaningful spectrum.

