Hot Electron Generation Mechanisms in Ignition-Scale
Direct-Drive Coronal Plasmas on the NIF
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Planar experiments at the NIF have studied LPI mechanisms responsible for hot-
electron generation at direct-drive ignition-relevant coronal conditions

uUR
LLE

* Planar experiments at scale lengths L,, ~ 600 yum and T, ~ 3 to 5 keV show hot
electron generation of f;,,;~ 0% to 5% for laser intensities of 0.4 to 1.5 x 1015 W/cm?

- Stimulated Raman scattering (SRS) is inferred to be the dominant LPl mechanism
— SRS is observed both at n./4 and in the <n /4 region
— hot-electron signatures more strongly correlate with underdense SRS

e 3w/2 measurements of SRS and/or TPD plasma waves at n./4 will provide a
constraint on 3D modeling of hot electron generation mechanisms using LPSE*

* R. K. Follett et al. Phys. Plasmas. 24, 1031128 (2017)




Collaborators

UR
LLE

A. A. Solodov, W. Seka, R. K. Follett, A. V. Maximov, C. Ren, S. Cao,
S. P. Regan, P. B. Radha, T. J. B. Collins, D. H. Froula, J. Palastro, and V. N. Goncharov
University of Rochester
Laboratory for Laser Energetics

J. F. Myatt
University of Alberta
Department of Electrical and Computer Engineering

P. Michel, M. Hohenberger, G. Swadling, and J. S. Ross
Lawrence Livermore National Laboratory

R. Scott and K. Glize
Rutherford Appleton Laboratory




Planar experiments on NIF reproduce plasma conditions unique to direct-drive ignition
designs, which long scale lengths may make susceptible to LPI and hot electron prehsgt
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2-D DRACO-simulated plasma conditions at n./4

NIF ignition NIF planar Planar platform
scale experiments CH

L, (um) 500 to 600 400 to 700
T, (keV) 3.5t0 5 3to5
I (Wicm?) (6to 8) x10™ (4 to 15) x10%
Nsrs” ~10 to 17 ~10 to 25
NTeD ~3to 6 ~3to 8

Experiments must be performed at these conditions to
understand LPI at the NIF/ignition scale.

* C. S. Liu, M. N. Rosenbluth, and R. B. White, Phys. Fluids 17, 1211 (1974).
** A. Simon et al. Phys. Fluids 26, 3107 (1983).
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Hot-electron generation of f, ; up to 5% has been inferred in planar targets at
intensities around 10'> W/cm? and SRS is observed
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Intensity around 5 x 10'* W/cm? may be acceptable for preheat, but we need to understand:
(1) LPI mechanisms (for mitigation), (2) how hot e~ diverge or couple to an implosion.*

* A. Solodov et al. this conference.
M. Rosenberg et al. Phys. Rev. Lett. 120, 055001 (2018).




Various SRS mechanisms scale differently in ramp-pulse experiments:
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Various SRS mechanisms scale differently in ramp-pulse experiments:
absolute n /4 SRS instability scales linearly with intensity;
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Various SRS mechanisms scale differently in ramp-pulse experiments:

absolute n /4 SRS instability scales linearly with intensity;
underdense (<n./4) SRS instability scales exponentially with intensity UR
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optical spectrometer  logyq absolute SRS instability

750 ,
.6 =
24— | 5@
2.2 s =
O ‘®
2.0 Qc
1.8 945
16 S e
14
Optical streaked
spectrometer Laser Power =)
(NBI Q33B) g 100
g 10-1
£ 102
g 103
) SRS near-backscatter
;— 10-4 is exponential
i s
7))

0.5 1.0 1.5
Single quad intensity (x1014 W/cm?2)

Time (ns)

E259629




Hard x-ray (HXR) emission from hot electrons scales near-exponentially
on ramp-pulse experiments

“ ” Shot N180628-001 ~150 keV x rays
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Exponential scaling suggests a connection between
hot-electron generation and underdense SRS
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Underdense SRS observations, including sidescatter*, correlate with
hard x-ray measurements both in time and across different experiments
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* P. Michel et al., Phys. Rev. E 99, 033203 (2019)




In addition to SRS scattered light measurements, 3w/2 emission contains
information about SRS and/or TPD plasma waves near n_/4
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Knowing the probed plasma wave k-vector and the scattered light spectrum constrains 3D
LPSE* simulations of SRS and TPD that will relate the observed features to specific instabilities

* R. K. Follett et al. Phys. Plasmas. 24, 1031128 (2017)




Summary/Conclusions

Planar experiments at the NIF have studied LPI mechanisms responsible for hot-
electron generation at direct-drive ignition-relevant coronal conditions

uUR
LLE

* Planar experiments at scale lengths L,, ~ 600 ym and T, ~ 3 to 5 keV show hot
electron generation of f;,,;~ 0% to 5% for laser intensities of 0.4 to 1.5 x 1015 W/cm?

- Stimulated Raman scattering (SRS) is inferred to be the dominant LPl mechanism
— SRS is observed both at n./4 and in the <n /4 region
— hot-electron signatures more strongly correlate with underdense SRS

e 3w/2 measurements of SRS and/or TPD plasma waves at n./4 will provide a
constraint on 3D modeling of hot electron generation mechanisms using LPSE*

Knowing the density at which hot electrons are generated will guide hot

electron preheat mitigation strategies for direct-drive ignition designs

* R. K. Follett et al. Phys. Plasmas. 24, 1031128 (2017)




APPENDIX
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Direct-drive—ignition designs predict long-density scale lengths and high
electron temperatures at which LPlI may generate hot-electron preheat
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Experiments must be performed at these conditions to
understand LPI at the NIF/ignition scale.




Planar experiments on the NIF were designed to achieve plasma conditions
comparable to direct-drive—ignition designs
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understand LPI at the NIF/ignition scale.

* C. S. Liu, M. N. Rosenbluth, and R. B. White, Phys. Fluids 17, 1211 (1974).
** A. Simon et al. Phys. Fluids 26, 3107 (1983).




Optical data demonstrate different LPI physics on the NIF than on OMEGA:
SRS dominates the scattered-light spectrum (both at and below n_/4)
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* W. Seka et al., Phys. Plasmas 16, 052701 (2009).




The dominance of SRS at the NIF scale may be partially explained by evaluating
the absolute thresholds of SRS versus TPD
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M. Rosenberg et al. Phys. Rev. Lett. 120, 055001 (2018).
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SRS sidescatter is observed and is thought to be a key underdense

SRS mechanism

uUR

Shot N160421-001

50°
Optical streaked * A
spectrometers q
40 | | | |

= 30 .

= 23°
- 20 7

2

3 10 -

o

o

0 2 4 6 8

E25568i

A (nm)

A (nm)

LLE
Optical spectrometers

3
650 2 Observation at 50°
can only be sidescatter.
550 1 Tangential SRS sidescatter

theory* predicts scattered light
wavelength independent of

750 log1o beam angle, as observed.
4

650 =
3
2

550

M. Rosenberg et al. Phys. Rev. Lett. 120, 055001 (2018).
*P. Michel et al. Phys. Rev. E 99, 033203 (2019).



This observation can be explained by tangential SRS sidescatter,* which allows for
SRS observation at large angles and wavelength independent of drive-beam angle
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*P. Michel et al. Phys. Rev. E 99, 033203 (2019).




Various SRS mechanisms scale differently in ramp-pulse experiments:
absolute n /4 SRS instability scales linearly with intensity;

underdense (<n//4) SRS instability scales exponentially with intensity LR
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In addition to SRS measurements, recent experiments diagnosed
Thomson-scattered light from plasma waves at and below n_/4
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Wave-matching conditions likely not satisfied for probing underdense SRS,

but 3w/2 feature contains information about plasma waves at n_ /4

OTS: optical Thomson scattering




In addition to SRS scattered light measurements, 3w/2 emission contains
information about SRS and/or TPD plasma waves near n_/4
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Knowing the probed plasma wave k-vector and the scattered light spectrum constrains 3D
LPSE* simulations of SRS and TPD that will relate the observed features to specific instabilities

* R. K. Follett et al. Phys. Plasmas. 24, 1031128 (2017)




Experiments in September aim to identify the exact quarter-critical plasma waves
that are being probed, with the help of new 3-D SRS/TPD modeling in LPSE
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The tolerable fraction of hot electrons generated (f,,;) depends on how the
electrons couple to an implosion
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Direct-drive implosion
Wide angular divergence* Narrow angular divergence
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*OMEGA experiments described in B. Yaakobi et al. Phys. Plasmas 20 092706 (2013).

E27569b




A spherical-geometry platform has been implemented on the NIF to diagnose
coupling of hot electrons to an imploding shell
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Experiments in September 2018 Predicted NIF
and March 2019 hard x-ray data
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of 271, Ge-doped target at 3.9%
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*Platform adapted from OMEGA:
A. Christopherson et al., APS-DPP Meeting (2016)
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Difference in hard x-ray signals between mass-equivalent CH and multilayered

implosions — hot-electron energy deposited in the inner shell layer.

See also A. A. Solodov, this conference.




Experiments demonstrate an identical SRS/hot-electron source and a ~2x
enhancement of HXR signal in the doped targets
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Hard x-ray enhancement is consistent with a wide angular divergence and
~XX% of hot-electron energy deposited as preheat in the inner shell layer.

See also A. A. Solodov, this conference.




