Hot spot and fuel imaging using nuclear diagnostics on direct-drive cryogenic implosions at OMEGA

Hans Rinderknecht University of Rochester Laboratory for Laser Energetics 61st Meeting of the APS Division of Plasma Physics Fort Lauderdale, FL October 21—25, 2019

Synthetic (n,d) images:

Hot spot and fuel imaging using nuclear diagnostics on direct-drive cryogenic implosions at OMEGA

Hans Rinderknecht University of Rochester Laboratory for Laser Energetics 61st Meeting of the APS Division of Plasma Physics Fort Lauderdale, FL October 21—25, 2019

Summary

Deuteron imaging offers a uniquely powerful diagnostic of hotspot and fuel ρR symmetry for directly-driven inertial confinement fusion implosions

- Deuterons scattered from the dense DT-fuel layer by 14-MeV neutrons have an energy that depends on the scattering angle and ranging as they leave the fuel:
 - High energy deuterons (E > 12 MeV) encode an image of the neutron producing region
 - Lower energy deuterons (E < 8 MeV) encode information about pR symmetry
- A Knock-on Deuteron Imager (KoDI) is under development for cryogenic implosions on OMEGA
 - A Monte Carlo code has been developed to predict diagnostic signatures and develop analysis methods
 - Experimental tests with warm and cryogenic implosions are ongoing

1 I E

Collaborators

C. J. Forrest, J. P. Knauer, W. Theobald, and S. P. Regan Laboratory for Laser Energetics, University of Rochester, USA

> R. Simpson, M. Gatu Johnson and J. A. Frenje Massachusetts Institute of Technology, USA

Elastic (n,d) scattering creates deuterons with energy in range 0—12.4 MeV, depending on the scattering angle θ

A Monte Carlo algorithm was developed to calculate scattered deuteron images

Synthetic images: ρR = 200 mg/cm²

Highest energy deuterons image the emission region

Synthetic images: ρR = 200 mg/cm²

Highest energy deuterons image the emission region

Lower energy deuterons image ρR vs. shell position.

DT-fuel Forward scatter: (n,d)> 12 MeV DT-n 4 1 Me θ << 1 Side scatter: θ >> 1 < 6 MeV

With OMEGA yields, a resolution of $< 10 \mu m$ is expected.

Synthetic images with 50% mode-1 perturbation

Highest energy deuterons image the emission region

Lower energy deuterons image ρR vs. shell position.

We are developing an (n,d) measurement capability based on the existing Penumbral Core Imaging System (PCIS) diagnotic

Existing PCIS hardware

	Goal	Experiment
Stage 0	Demonstrate proof-of- concept using PCIS	 ✓ 12/4 Expl. Pushers • CD(DT) implosion
Stage 1	Image high-energy D: PCIS with optimized aperture	Cryogenic implosions First test: Oct 2019
Stage 2	Spectral resolution: PCIS with optimized hardware	Cryogenic implosions FY20 Q2
Stage 3	High-resolution spectral imaging & background reduction: optimized KoDI	

As a TIM-based instrument, this capability can readily be used on up to 6 lines of sight to image the fuel layer in three dimensions.

Implosions of deuterated plastic shell (CD) filled with DT will provide a demonstration of the imaging technique for areal density

- 'Single-channel' test of spectral imaging measurement:
 - knock-on deuterons only, tritons suppressed
- Six shots will vary ρR and test induced asymmetry

Initial cryogenic tests will record only the high-energy deuterons (E > 12 MeV) to demonstrate hotspot imaging

0

10

10.5

11

• Magnification M_{rad} = 7

Stage 1

• Aperture solid angle = 7.9e-5 sr

Assuming a DT-n yield = $1e14 \rightarrow Y_D(>12 \text{ MeV}) < 1e9/sr$

- N in aperture = 8e4 deuterons
- Fluence @ 70 cm = 1.5e5 tracks/cm²
- N in penumbra = $(2\pi M_{rad} R_{ap})(M_{pin} R_{fuel})F/2 = 5e3$

11.5

12

12.5

Modified PCIS hardware will increase magnification and reduce fluence on the detector, allowing spectral information to be resolved

- Fluence @ 340 cm = 9.3e5 tracks/cm² (full spectrum)
- N in penumbra = $(2\pi M_{rad} R_{ap})(M_{pin} R_{fuel})F/2 = 5e5$

KOCHESTER

Filtering may be used to select different parts of the (n,d),(n,t) spectra in different penumbra

With reduced fluence and higher magnification, KoDI is predicted to be sensitive to variations in the shape of the cold fuel

Deuteron + Triton images: ρR = 200 mg/cm²

50% offset

50 μ m Al filtering: E_D = [2.9, 4.9] MeV E_T = [3.3, 5.3] MeV

150 μ m Al: E_D = [5.7, 7.7] MeV E_T = [6.7, 8.7] MeV

500 µm Al: E_D = [11.8, 13.8] MeV *no tritons*

Summary

Deuteron imaging offers a uniquely powerful diagnostic of hotspot and fuel ρR symmetry for directly-driven inertial confinement fusion implosions

- Deuterons scattered from the dense DT-fuel layer by 14-MeV neutrons have an energy that depends on the scattering angle and ranging as they leave the fuel:
 - High energy deuterons (E > 12 MeV) encode an image of the neutron producing region
 - Lower energy deuterons (E < 8 MeV) encode information about ρR symmetry
- A Knock-on Deuteron Imager (KoDI) is under development for cryogenic implosions on OMEGA
 - A Monte Carlo code has been developed to predict diagnostic signatures and develop analysis methods
 - Experimental tests with warm and cryogenic implosions are ongoing

See also: R. Simpson, Friday 10:30 (YO5.6)!

1 I E

Appendix

Cryogenic implosions on OMEGA are expected to produce deuteron fluxes that are too large for the current diagnostic system

Deuteron fluence on detector:
$$F_D \approx \frac{Y_n \sigma_{n,D} \rho R}{4\pi D_{tot}^2 \langle A \rangle} = 1.22 \times 10^7 \text{ cm}^{-2} \left(\frac{\rho R}{100 \text{ mg/cm}^2}\right) \left(\frac{Y_n}{10^{14}}\right) \left(\frac{D_{tot}}{100 \text{ cm}}\right)^{-2} >> 10^6 \text{ cm}^2,$$

Neutron fluence on detector: $F_n = \frac{Y_n}{4\pi D_{tot}^2}$
Signal to background ratio: $\frac{S}{B} = \frac{F_D \epsilon_D}{F_n \epsilon_n} = 380 \left(\frac{\rho R}{100 \text{ mg/cm}^2}\right)$ · deuteron detection efficiency: $\epsilon_D \sim 1$
· neutron detection efficiency: $\epsilon_n \sim 4e-5$

*J. A. Frenje et al., "Absolute measurements of neutron yields in DD and DT implosions at the OMEGA laser facility using CR-39 track detectors", Rev. Sci. Instrum. 73 (2002) 2597.

Stage 1

Stage 3

Ultimately, a time-of-flight/scintillator imaging design may allow detailed resolution of deuteron energy bins with significant background reduction.

Particle intensity vs time (3 meters, low pR)

In the limit of recording only the highest-energy deuterons (E > 12 MeV), the deuteron image is equivalent to a neutron image with blur \leq 20% of fuel radius

Amplitude of deuteron signal will not depend on ρR : all deuterons with E>12 are born near the outer edge of fuel.

UR

Deuteron energy (MeV)

A fundamental challenge (or opportunity): if scattered deuterons are observed, there are also scattered tritons – and detectors cannot generally discriminate between them

OMEGA PCIS was tested as a ride-along to do simultaneous knock-on deuteron imaging (with CR-39) and x-ray imaging (with Image Plates)

- The x-ray imaging tests were very successful implications for measuring spatially resolved Te
- CR-39 analysis for knock-on deuteron imaging is underway at MIT.
- Thanks to Sandia for letting us ride along!

Four filter configurations were fielded: goal was to isolate high-energy deuterons on some shots, obtain spectral slices of D, T signal on others

UR 👋					
	Minimum T energy (MeV)	Minimum D energy (MeV)	ng type (µm Al)	DT-n Yield Filteri	Shot #
2.5 ×10 ⁻⁶ , , , , , , , , , , , , , , , , , , ,	n.a.	9.5	350	1.42E+14	91962
	n.a./9.2	9.5/7.8	350/250	1.43E+14	91963
	4.3/6.0/	3.7/5.1/	75/125/	1 48E+14	91964
	n.a./n.a.	10.7/11.4	425/475		91904 1.40L+
0.5	9.2/10.2/	7.8/8.7/	250/300/	1 51E+14	91965
	n.a./n.a.	9.5/10.3	350/400		01000
MeV	n.a.	9.5	350	1.33E+14	91966
	n.a./9.2	9.5/7.8	350/250	8.75E+13	91968
Due to low $\rho R \sim 1 \text{ mg/cm}^2$, these	4.3/6.0/	3.7/5.1/	75/125/		01060
case scenario for signal-to-	n.a./n.a.	10.7/11.4	425/475		31303
background.	9.2/10.2/	7.8/8.7/	250/300/	TÉR	ROCHES

A plan for KoDI-PCIS implementation and testing aims to demonstrate the technique on cryogenic implosions in FY19

Tasks	FY19Q1	Q2	Q3	Q4	FY20
Experiments: Stage 0	12/4 Expl. Pushers: collect proof-of- concept data.	CD(DT) experiment: Demonstrate "layer" image, multiple TIMs			
Stage 1		Finalize & order Stage 1 apertures	Field KoD-PCIS on cryo: High-energy D only	Multiple TIMs	
Stage 2				Finalize design, order hardware	Field Stage II: spectral resolution
Stage 3			Conce	eptual design/whitepaper	CDR
Analysis development	Develop processing methods Analyze Stage 0 data		Develop analysis algorithms Analyze Stage 1 data		Analyze Stage 2
Modeling development					

Due to high deuteron fluences, initial cryogenic tests will record only the high-energy deuterons > 11 MeV (for hotspot imaging): only ~5% of deuterons are detected

CR-39

Due to high deuteron fluence on $Yn = 10^{14}$ shots, alternative aperture ideas are needed. Initial cryogenic experiments will focus on high-energy (> 10 MeV) deuterons for simplicity.

What if we did multi-penumbral, low-magnification imaging?

1. Multi-penumbral imaging: 200 µm diameter aperture N ~ 5300 deuterons in each image R_image = 200 microns; image spacing ~ 1 mm → 45 img across detector → 1500 images total N ~ 8e6 deuterons total

Fluence = $Y_D/4\pi(120 \text{ cm})^2 \sim 4.3e6 \text{ tracks/cm}^2$ ~ 8e5 > 10 MeV Neutron background = 1e14*4e-5/4 π (120 cm)² ~ 2.2e4 tracks/cm²

Magnification: CR-39 size: $M_{pin} = 1$ ($M_{rad} = 2$) 5 cm diameter

Modified PCIS hardware holding the CR-39 attached to the rear of the TIM will increase magnification and reduce fluence on the detector, enabling seven penumbral images to be recorded near the same line of sight.

