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High-energy deuterons (> 12 MeV) 

record hotspot shape 

Low-energy deuterons (2—3 MeV) 

record cold fuel morphology

DT-fuel

DT-n

(n,d)

Hot spot and fuel imaging using nuclear diagnostics 

on direct-drive cryogenic implosions at OMEGA
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Summary

• Deuterons scattered from the dense DT-fuel layer by 14-MeV neutrons have an energy that depends on 

the scattering angle and ranging as they leave the fuel:

－ High energy deuterons (E > 12 MeV) encode an image of the neutron producing region

－ Lower energy deuterons (E < 8 MeV) encode information about ρR symmetry

• A Knock-on Deuteron Imager (KoDI) is under development for cryogenic implosions on OMEGA

－ A Monte Carlo code has been developed to predict diagnostic signatures and develop analysis methods

－ Experimental tests with warm and cryogenic implosions are ongoing

Deuteron imaging offers a uniquely powerful diagnostic of hotspot and fuel ρR 

symmetry for directly-driven inertial confinement fusion implosions
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Elastic (n,d) scattering creates deuterons with energy in range 0—12.4 MeV, 

depending on the scattering angle θ

DT-fuel

DT-n

14.1 MeV

(n,d)
Forward scatter:

> 12 MeV

θ

Introduction

θ Side scatter:

< 6 MeV

• Deuteron yield scales with ρR:  
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A Monte Carlo algorithm was developed to calculate scattered deuteron images

4. Deuteron, Triton ranging in fuel

Maynard-Deutch stopping power

Aperture geometry limits allowed angles:

3. D, T generation in fuel (x N per neutron):

2. Probability of (n,D), (n,T) reaction in fuel:

1. Neutron generation in hotspot: position & velocity

DT-fuel

DT-n

14.1 MeV

(n,d)
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W W  …for Nneutrons launched with a given (xn0, vn0) 

producing Ndetected deuterons through the aperture.

Total probability

for each particle:
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Knock-on Deuteron Imaging (KoDI) is complementary to neutron imaging and 

provides information on both hotspot size and converged fuel shape

DT-fuel

DT-n

14.1 MeV

(n,d)
Forward scatter:

> 12 MeV

θ << 1

Highest energy deuterons 

image the emission region

Synthetic images:

ρR = 200 mg/cm2
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Knock-on Deuteron Imaging (KoDI) is complementary to neutron imaging and 

provides information on both hotspot size and converged fuel shape

DT-fuel

DT-n

14.1 MeV

(n,d)
Forward scatter:

> 12 MeV

θ << 1

Highest energy deuterons 

image the emission region

E > 12 MeV

Neutrons:

σ = 10 μm 

Synthetic images:

ρR = 200 mg/cm2
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Knock-on Deuteron Imaging (KoDI) is complementary to neutron imaging and 

provides information on both hotspot size and converged fuel shape

DT-fuel

DT-n

14.1 MeV

(n,d)
Forward scatter:

> 12 MeV

θ << 1

θ >> 1
Side scatter:

< 6 MeV

Highest energy deuterons 

image the emission region

Lower energy deuterons 

image ρR vs. shell position.

Synthetic images:

ρR = 200 mg/cm2

With OMEGA yields, a resolution of < 10 μm is expected.
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Knock-on Deuteron Imaging (KoDI) is complementary to neutron imaging and 

provides information on both hotspot size and converged fuel shape

DT-fuel

DT-n

14.1 MeV

(n,d)
Forward scatter:

> 12 MeV

θ << 1

θ >> 1
Side scatter:

< 6 MeV

Highest energy deuterons 

image the emission region

Lower energy deuterons 

image ρR vs. shell position.

Synthetic images with

50% mode-1 perturbation

With OMEGA yields, a resolution of < 10 μm is expected.
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We are developing an (n,d) measurement capability based on the existing 

Penumbral Core Imaging System (PCIS) diagnotic

Penumbral aperture:

Radius = 1 mm

Nosecone 

CR-39 

+ filters

Alternative 

filter slots

Detector-to-aperture 

distance:  59 cm

Existing PCIS hardware

Goal Experiment

Stage 0 Demonstrate proof-of-

concept using PCIS

 12/4 Expl. Pushers

• CD(DT) implosion

Stage 1 Image high-energy D: PCIS 

with optimized aperture

Cryogenic implosions 

First test: Oct 2019

Stage 2 Spectral resolution: PCIS 

with optimized hardware

Cryogenic implosions 

FY20 Q2

Stage 3 High-resolution spectral 

imaging & background 

reduction: optimized KoDI

…

As a TIM-based instrument, this capability 

can readily be used on up to 6 lines of sight 

to image the fuel layer in three dimensions.
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Implosions of deuterated plastic shell (CD) filled with DT will provide a 

demonstration of the imaging technique for areal density

• Expected performance: 

• ρR ~ 50 mg/cm2, DT yield ~ 3e12

 ~5e9 scattered deuterons

• ‘Single-channel’ test of spectral imaging measurement: 

• knock-on deuterons only, tritons suppressed

• Six shots will vary ρR and test induced asymmetry

DT, 18 atm

CD (1:1.4)

Stage 0

Angles between TIMs: 

∠(TIM2,TIM4): 80°

∠(TIM2,TIM3): 140°

∠(TIM3,TIM4): 80°
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Initial cryogenic tests will record only the high-energy deuterons 

(E > 12 MeV) to demonstrate hotspot imaging

Stage 1
C

R
-3

9

Ddet = 60 cm Dap = 10 cm

(Limited by shroud)

Rfuel ~ 50 μm
Filtering:

500 μm Al

Scattered tritons are blocked by the filtering: 

a robust (n,d) hotspot image is expected

Aperture:

Rap = 0.5 mm

Assuming a DT-n yield = 1e14  YD(>12 MeV) < 1e9/sr

• N in aperture = 8e4 deuterons

• Fluence @ 70 cm = 1.5e5 tracks/cm2

• N in penumbra = (2π Mrad Rap)(Mpin Rfuel)F/2 = 5e3 

• Magnification Mrad = 7

• Aperture solid angle = 7.9e-5 sr
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Modified PCIS hardware will increase magnification and reduce fluence

on the detector, allowing spectral information to be resolved

Stage 2
C

R
-3

9

Ddet ~ 360 cm

(back of TIM)

Dap = 10 cm

(Limited by shroud)

Filtering may be used to select different parts 

of the (n,d),(n,t) spectra in different penumbra

Rfuel ~ 50 μm

Apertures:

Rap = 0.25 mm

• Magnification Mrad = 34

• Aperture solid angle = 2e-5 sr

Assuming a DT-n yield = 1e14  YD = 1.2e11/sr

• N in aperture = 2.4e6 deuterons 

• Fluence @ 340 cm = 9.3e5 tracks/cm2 (full spectrum)

• N in penumbra = (2π Mrad Rap)(Mpin Rfuel)F/2 = 5e5

50 μm Al filtering:

ED = [2.9, 4.9] MeV

ET = [3.3, 5.3] MeV

150 μm Al:

ED = [5.7, 7.7] MeV

ET = [6.7, 8.7] MeV

500 μm Al:

ED = [11.8, 13.8] MeV

no tritons

Deuteron + Triton images ρR = 200 mg/cm2
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With reduced fluence and higher magnification, KoDI is predicted to be 

sensitive to variations in the shape of the cold fuel

Stage 2

50 μm Al filtering:

ED = [2.9, 4.9] MeV

ET = [3.3, 5.3] MeV

150 μm Al:

ED = [5.7, 7.7] MeV

ET = [6.7, 8.7] MeV

500 μm Al:

ED = [11.8, 13.8] MeV

no tritons

Deuteron + Triton images:
ρR = 200 mg/cm2

Symmetric 50% offset
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Summary

Deuteron imaging offers a uniquely powerful diagnostic of hotspot and fuel ρR 

symmetry for directly-driven inertial confinement fusion implosions

• Deuterons scattered from the dense DT-fuel layer by 14-MeV neutrons have an energy that depends on 

the scattering angle and ranging as they leave the fuel:

－ High energy deuterons (E > 12 MeV) encode an image of the neutron producing region

－ Lower energy deuterons (E < 8 MeV) encode information about ρR symmetry

• A Knock-on Deuteron Imager (KoDI) is under development for cryogenic implosions on OMEGA

－ A Monte Carlo code has been developed to predict diagnostic signatures and develop analysis methods

－ Experimental tests with warm and cryogenic implosions are ongoing

See also: R. Simpson, Friday 10:30 (YO5.6)!
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Appendix
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Cryogenic implosions on OMEGA are expected to produce deuteron fluxes 

that are too large for the current diagnostic system

Stage 1

Deuteron fluence on detector:  

Neutron fluence on detector:  

Signal to background ratio:  
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the OMEGA laser facility using CR-39 track detectors", Rev. Sci. Instrum. 73 (2002) 2597.
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• deuteron detection efficiency: εD ~ 1 

• neutron detection efficiency*: εn ~ 4e-5
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Upper limit for CR-39
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Ultimately, a time-of-flight/scintillator imaging design may allow detailed resolution 

of deuteron energy bins with significant background reduction.

Stage 3

X-rays

DT-neutrons

(n,d) deuterons

(n,t) tritons

Scintillator: ns decay time,

Thickness matched to deuteron range

Light is imaged/fiber-coupled 

to 2+ gated cameras

Particle intensity vs time (3 meters, low ρR)

x n d

t



20

In the limit of recording only the highest-energy deuterons (E > 12 MeV), 

the deuteron image is equivalent to a neutron image with blur ≤ 20% of fuel radius

DT-fuel

(n,d)
Forward scatter:

E > 12 MeV

θ ≤ 10˚

θ (degrees)

Blur = Δx/Rfuel (%)

Δx

Rfuel

Amplitude of deuteron signal will not depend on ρR: 

all deuterons with E>12 are born near the outer edge of fuel.

Blur 

= 18%
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A fundamental challenge (or opportunity): if scattered deuterons are observed, there 

are also scattered tritons – and detectors cannot generally discriminate between them

(n,d)

(n,t)

(n,t)

(n,d)

6—7 MeV particle images:
ρR = 100 mg/cm2

Deuterons Tritons

Analysis procedures will be developed to 

interpret both particle channels simultaneously.
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OMEGA PCIS was tested as a ride-along to do simultaneous knock-on deuteron 

imaging (with CR-39) and x-ray imaging (with Image Plates)

• The x-ray imaging tests were very successful – implications for measuring spatially resolved Te
• CR-39 analysis for knock-on deuteron imaging is underway at MIT.
• Thanks to Sandia for letting us ride along!

Aperture

Source

Da~ 2mm

L1 = 4.2 cm L2 = 59 cm 

Magnification (M) = L2/L1 = 14

Im
ag

e
 P

la
te

 (
IP

)

C
R

-3
9

PCIS-IP Geometry
X-ray penumbral image from Shot 91966

Stage 0
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Four filter configurations were fielded: goal was to isolate high-energy 

deuterons on some shots, obtain spectral slices of D, T signal on others

Shot # DT-n Yield Filtering type (μm Al)
Minimum D 

energy (MeV)

Minimum T 

energy (MeV)

91962 1.42E+14 350 9.5 n.a.

91963 1.43E+14 350/250 9.5/7.8 n.a./9.2

91964 1.48E+14
75/125/

425/475

3.7/5.1/

10.7/11.4

4.3/6.0/

n.a./n.a.

91965 1.51E+14
250/300/

350/400

7.8/8.7/

9.5/10.3

9.2/10.2/

n.a./n.a.

91966 1.33E+14 350 9.5 n.a.

91968 8.75E+13 350/250 9.5/7.8 n.a./9.2

91969 1.55E+14
75/125/

425/475

3.7/5.1/

10.7/11.4

4.3/6.0/

n.a./n.a.

91970 1.51E+14
250/300/

350/400

7.8/8.7/

9.5/10.3

9.2/10.2/

n.a./n.a.

deuterons

tritons

Due to low ρR ~ 1 mg/cm2, these 

experiments are close to a worst-

case scenario for signal-to-

background.

Stage 0
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A plan for KoDI-PCIS implementation and testing aims to demonstrate the technique on 

cryogenic implosions in FY19

Tasks FY19Q1 Q2 Q3 Q4 FY20

Experiments:

Stage 0

12/4 Expl. Pushers: 

collect proof-of-

concept data.

CD(DT) experiment:

Demonstrate “layer” 

image, multiple TIMs

Stage 1 Finalize & order 

Stage 1 apertures

Field KoD-PCIS on cryo:

High-energy D only

Multiple TIMs

Stage 2 Finalize design, 

order hardware

Field Stage II: 

spectral resolution

Stage 3 Conceptual design/whitepaper CDR

Analysis

development

Develop processing methods

Analyze Stage 0 data

Develop analysis algorithms

Analyze Stage 1 data

Analyze Stage 2 

Modeling

development

LLE: simulate (n,d) images with profiles (DEC2D)

MIT: model realistic spectra w/ profiles
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Due to high deuteron fluences, initial cryogenic tests will record only the high-energy 

deuterons > 11 MeV (for hotspot imaging): only ~5% of deuterons are detected

Stage 1
C

R
-3

9

Ddet = 60 cm Dap = 10 cm

(Limited by shroud)

Rfuel ~ 50 μm

Aperture

1. Penumbral imaging: 

1 mm diameter aperture

N ~ 5.5e4 deuterons in the penumbra

Fluence = YD/4π(70 cm)2 ~ 6.5e5 tracks/cm2

2. “Ring” penumbral imaging:

1 mm diameter, ~ 10 μm wide circular slit:

N = YD 2π(Rap)(Wslit)/4π(Dap)
2 ~ 1e4 deuterons

Fluence = N/[2π(Rap*Mrad)]/[Rfuel*Mpin] 

~ 1.5e5/cm2

3. Multi-pinhole imaging:  for 10 μm OD pinhole, 

30 images across the detector  ~700 images total:

N = 24 d/pinhole  1.7e4 d total

Fluence = 7e3 /cm2

0%

5%

10%

15%

20%

0 50 100 150 200

rhoR (mg/cm2)

10 MeV

11

12

Fraction of deuterons > given energy
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Due to high deuteron fluence on Yn = 1014 shots, alternative aperture ideas are needed.  

Initial cryogenic experiments will focus on high-energy (> 10 MeV) deuterons for simplicity.

Stage 1
C

R
-3

9

Ddet = 59 cm Dap = 10 cm

(Limited by shroud) 1. Penumbral imaging: 

1 mm diameter aperture

N ~ 1.1e6 deuterons in the penumbra

Fluence = YD/4π(70 cm)2 ~ 1.3e7 tracks/cm2

2. “Ring” penumbral imaging:

1 mm diameter, ~ 10 μm wide circular slit:

N = YD 2π(Rap)(Wslit)/4π(Dap)
2 ~ 2e5 deuterons

Fluence = N/[2π(Rap*Mrad)]/[Rfuel*Mpin] 

~ 3e6/cm2

3. Multi-pinhole imaging:  for 10 μm OD pinhole, 

30 images across the detector  ~700 images total:

N = 480 d/pinhole  3.4e5 d total

Fluence = 1.3e5 /cm2

Magnification: Mpin = 6   (Mrad = 7)

CR-39 size: 5 cm diameter

Rfuel ~ 50 μm

Aperture
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What if we did multi-penumbral, low-magnification imaging?

Stage 1
C

R
-3

9

Ddet = 60 cm Dap = 60 cm

(Limited by shroud) 1. Multi-penumbral imaging: 

200 μm diameter aperture

N ~ 5300 deuterons in each image

R_image = 200 microns; 

image spacing ~ 1 mm  45 img across detector

 1500 images total

N ~ 8e6 deuterons total

Fluence = YD/4π(120 cm)2 ~ 4.3e6 tracks/cm2

~ 8e5 > 10 MeV

Neutron background = 1e14*4e-5/4π(120 cm)2

~ 2.2e4 tracks/cm2

Magnification: Mpin = 1   (Mrad = 2)

CR-39 size: 5 cm diameter

Rfuel ~ 50 μm

Aperture
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Modified PCIS hardware holding the CR-39 attached to the rear of the TIM 

will increase magnification and reduce fluence on the detector, enabling 

seven penumbral images to be recorded near the same line of sight.

Stage 2

Ddetector = 3647mm
inside crystal imager ass’y

Daperture ≥ 100 mm

limited by shroud

Rfuel ≤ 100 μm

Aperture Array:
Ta, 200 μm substrate

Aperture radius = 0.25 mm

Aperture spacing = 0.8 mm

Hexagonal pattern:

CR-39: 10x10cm
Detector radius ~ 48 mm

Magnification = 36.47

Projected aperture R = 9.12 mm

Penumbra half width ≤ 3.55 mm

Total data radius ~ 45.5 mm

Dflange = 3547mm

Flange: 
Hardware radius = 48.7 mm

Magnification = 35.47

Projected aperture R = 8.87 mm

Penumbra half width ≤ 3.45 mm

Total data radius ~ 44.3 mm

Scale x10


