Hot-Spot Flow Velocity in Laser-Direct-Drive
Inertial Confinement Fusion Implosions
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3-D nuclear and x-ray diagnostics are used on OMEGA to understand
multidimensional effects on laser direct drive implosions
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e The 15t and 2" moments of the primary DT fusion neutron peak
are diagnosed with four neutron time-of-flight detectors (3-D nToF)

e 3-D nToF measurements at stagnation indicate a hot-spot flow velocity
of 50 to 150 km/s having an inverse relationship with neutron yield

e Comparison of 3-D hot-spot x-ray imaging* with 3-D nToF
measurements reveals the hot-spot elongates along the hot-spot
flow velocity direction

3-D x-ray and nuclear measurements are essential to diagnose the

causes of performance limitations in inertial confinement fusion.
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Nonuniformity Sources

Multidimensional effects are seeded by many sources
of nonuniformity in laser direct drive
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The on-target, laser drive is adjusted by changing initial target
position to counteract the measured hot-spot flow velocity.
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Hot-spot flow velocity

Asymmetric compression drives a hot-spot flow affecting the 1st and 2"

moments of the primary DT fusion neutrons* LR
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Hot-spot flow velocity

Six neutron time-of-flight detectors are used on OMEGA

to infer hot-spot flow velocity and apparent T, asymmetry* LR
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LOS: line of sight
*O. M. Mannion et al., “A Suite of Neutron Time-of-Flight Detectors for Measurements of Hot Spot Motion in Direct Drive Inertial Confinement Fusion

Experiments on OMEGA,” to be submitted to Nuclear Instruments and Methods.




Neutron Yield Versus Hot-Spot Flow Velocity

Neutron yield increases as the hot-spot flow decreases
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The direction of hot-spot flow is fairly constant during
a shot day, but varies from one shot day to another.
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Counteracting the Hot-Spot Flow Velocity

Counteracting hot-spot flow velocity by imposing an ¥ = 1 drive asymmetry
with an initial target offset improves target performance at stagnation
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Hot-Spot Flow Velocity Versus 3-D Gated Hot-Spot X-Ray Images

Comparison of 3-D hot-spot imaging with 3-D nuclear measurements
of hot-spot flow reveals the hot-spot elongates along flow direction
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Hot-Spot Flow Velocity Versus 3-D Gated Hot-Spot X-Ray Images

Comparison of 3-D hot-spot imaging with 3-D nuclear measurements
of hot-spot flow reveals the hot-spot elongates along flow direction
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Summary/Conclusions

3-D nuclear and x-ray diagnostics are used on OMEGA to understand
multidimensional effects on laser direct drive implosions
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e The 15t and 2" moments of the primary DT fusion neutron peak
are diagnosed with four neutron time-of-flight detectors (3-D nToF)

e 3-D nToF measurements at stagnation indicate a hot-spot flow velocity
of 50 to 150 km/s having an inverse relationship with neutron yield

e Comparison of 3-D hot-spot x-ray imaging* with 3-D nToF
measurements reveals the hot-spot elongates along the hot-spot
flow velocity direction

3-D x-ray and nuclear measurements are essential to diagnose the

causes of performance limitations in inertial confinement fusion.
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Nonuniformity Sources

Diagnostics are being developed to measure laser drive on target
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Laser power measurement (P510)
Harmonic energy diagnostic (HED)

UV equivalent target plane
(UVETP) measurement

Full-beam in-tank (FBIT)
x-ray target plane (XTP)
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As a tool to improve the implosion symmetry, the target positioning

is adjusted to compensate sources of nonuniformity.
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FCC: frequency-conversion crystal
F-ASP: stage-F alignment sensor package
DPR: distributed polarization rotators
DPP: distributed phase plates



Spatial Variation in the Compressed Areal Density

Counteracting hot-spot flow velocity by imposing an £ = 1 drive asymmetry
alters the spatial variation in the compressed areal density (pR)
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3-D diagnostics for hot spot and compressed shell are essential.

TIM: ten-inch manipulator




LDD on OMEGA

The best-performing implosion on OMEGA achieved
an energy-scaled (X0 o)scaleq = 0-74*
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* Scaled to Eyv = 1.9 MJ; V. Gopalaswamy et al., Nature 565, 581 (2019).
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