X-ray Diffraction of Double-Shocked Diamond

D. N. Polsin
University of Rochester
Laboratory for Laser Energetics

APS DPP
Fort Lauderdale, FL
21-25 October, 2019
We are developing double-shock x-ray diffraction (XRD) to detect phase transitions (melting/diamond-bc8)

- The melting properties of carbon at high pressures are important for designing ICF implosions and for modeling planetary interiors
- Velocimetry and pyrometry measurements* on double shocked diamond reveal that the melting temperatures at pressures between 0.6 TPa and 2.5 TPa are relatively flat
- Double shock XRD measurements explored the diamond phase diagram for first shocks ranging from 300-800 GPa and final shock pressures up to ~1 TPa

* Hicks et al. (unpublished)
Collaborators

Laboratory for Laser Energetics

P.M. Celliers, D. Fratanduono, Y. Ping, J. Eggert, D. Munro, A. Jenei

Lawrence Livermore National Laboratory

D.G. Hicks

Swinburne University of Technology
The melting properties of diamond at high pressures are important for designing ICF implosions.
Phase transitions can be detected using x-ray diffraction on the secondary Hugoniot of diamond

- Double shock conditions access higher pressure states along the melt curve than states on the primary Hugoniot.
- At phase transitions, the Hugoniot is marked by plateaus caused by latent heat.
- The bc8 structure at high pressures has been proposed but has not been observed with XRD.
- The diamond phase is stable to 2 TPa under ramp compression (preliminary).

* L. Crandall
Double shock VISAR and SOP measurements use a step target design to determine the first shock pressures in diamond above the Hugoniot elastic limit.

VISAR: velocity interferometer for any reflector
SOP: streaked optical pyrometry

Hicks (unpublished)
Preliminary results* measured second shock pressures and temperatures to 2.5 TPa for first shock pressures between 300-400 GPa

Phase transitions can be detected using XRD

*Hicks (unpublished)
The powder x-ray diffraction image plate (PXRDIP*) platform is used to record diffraction patterns on OMEGA EP.

Impedance matching is used to determine the first shock pressures in the diamond (300-800 GPa)

LLNL AnalyzeVISAR code (Marius Millot) was used to process the VISAR / SOP data.
At the time of the x-ray exposure, the diamond is double-shocked, single-shocked, and unshocked.
Diffraction data was collected for first shocks between 350-850 GPa and final pressures up to ~1 TPa.
Summary/Conclusions

We are developing double-shock x-ray diffraction (XRD) to detect phase transitions (melting/diamond-bc8)

- The melting properties of carbon at high pressures are important for designing ICF implosions and for modeling planetary interiors

- Velocimetry and pyrometry measurements* on double shocked diamond reveal that the melting temperatures at pressures between 0.6 TPa and 2.5 TPa are relatively flat

- Double shock XRD measurements explored the diamond phase diagram for first shocks ranging from 300-800 GPa and final shock pressures up to ~1 TPa

* Hicks et al. (unpublished)
Summary/Conclusions

First reference

Second reference

Third reference

Fourth reference
The low-temperature, high-pressure phases of carbon are important for evolution models for solar (Uranus, Neptune) and extrasolar planets and white dwarfs.

Motivation

Ice giant

8 Mbar, ~8000 K

H, He gases
Superionic ice*, Methane, Hydrocarbons, Rocky core

\[\text{Diamond} \]

\[\text{Eggert et al.}^{**} \]

\[\text{Neptune adiabat} \]

\[\text{Wang}^{†} \]

\[\text{Correa}^{‡} \]

\[\text{Principal Hugoniot} \]

\[\text{Metallic Fluid} \]

\[\text{2nd Hugoniot (2 Mbar)} \]

\[\text{BC8} \]

\[* \text{Millot et al., Nat. Phys. 14, 297-302 (2018)} \]

\[** \text{Eggert et al., Nat. Phys. 6, 20-43 (2010)} \]

\[† \text{Wang et al., Phys. Rev. Lett. 95, 185701 (2005)} \]

\[‡ \text{Correa et al., Proc. Natl Acad. Sci. USA 103, 1204-1208 (2006)} \]
Two-shock experiments* observed several temperature jumps at shock catch-up

VISAR experiments

VISAR: velocity interferometer for any reflector
SOP: streaked optical pyrometry

*Hicks (unpublished)
Two-shock experiments* observed several temperature jumps at shock catch-up

VISAR experiments

VISAR: velocity interferometer for any reflector
SOP: streaked optical pyrometry

*Hicks (unpublished)
A first shock pressure of 2.2 Mbar in the diamond in measured from the adjacent quartz; the second shock pressure is less than 10 Mbar.

LLNL AnalyzeVISAR code (Marius Millot) was used to process the VISAR / SOP data.
At the time of the x-ray exposure, the diamond is double-shocked, single-shocked, and released.
A first shock pressure in the diamond is measured from the adjacent quartz.

LLNL AnalyzeVISAR code (Marius Millot) was used to process the VISAR / SOP data.
For first shocks ~4 Mbar, four distinct events are observed in the self-emission

VISAR experiments

VISAR: velocity interferometer for any reflector
SOP: streaked optical pyrometry

*Hicks (unpublished)
The wave-splitting can be explained by either strength or a phase transition.
For first shocks ~4 Mbar, four distinct events are observed in the self-emission.

VISAR experiments

Laser Drive

VISAR: velocity interferometer for any reflector
SOP: streaked optical pyrometry
Impedance matching

Imp match

- Quartz
- Us1 Quartz
- Diamond
- Reflect Quartz
- Copper
- Cu release

Pressure (GPa) vs. Particle Velocity (um/ns)