Measurements of Laser-Imprint-Induced Shock-Velocity Nonuniformities and Laser Imprint Mitigation

University of Rochester Laboratory for Laser Energetics

Imprinted shock front modulations from a single OMEGA beam

APS-DPP Jonathan Peebles October 26 2019

ROCHESTER

Collaborators

J. L. Peebles, S. X. Hu, W. Theobald, V. N. Goncharov, N. Whiting, E. M. Campbell, T. R. Boehly and S. P. Regan

University of Rochester Laboratory for Laser Energetics

P. M. Celliers, S. J. Ali Lawrence Livermore National Laboratory

> G. Duchateau University Bordeaux-CNRS-CEA

This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0003856 and by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

Summary

Experiments using 2D-VISAR show significant imprint reduction with overlapping beams

- Imprint appears to scale closely with $1/\sqrt{N_{Beams}}$ when there are more than 2 beams
- For single beam experiments more energy was present in large mode perturbations than expected
- 2D simulations including beam imprint underestimate modulations when compared to experiment

OHRV* probes the shock front, related to imposed modulation on ablation surface

RÖCHESTER

OHRV measures distortions closer to the initial laser imprint seed than x-ray radiography

Optical blanking restricts probe timing (900 ps) and pulse shape (only 100 ps pickets)

OHRV probe:

- Spatial resolution of 2-3 μm
- Velocity resolution of < 3.7 km/s per fringe shift, < 200 m/s per pixel
- Probe λ = 395 nm, 2 ps

*P. M. Celliers, et. al., Rev. Sci. Instrum. 81, 035101 (2010)

OHRV provides 2-D snapshots of shock-front velocity perturbations at a point in time

Addition of second beam shows clear reduction of imprinted modulations

ROCHESTER

Prior results predict σ_{rms} for the modulations should be reduced by the square root of the number of beams*

Applying the $\sqrt{N_{Beams}}$ factor requires choosing a reference

 $\sigma_{rms\ expected} = \sigma_{rms\ ref} \sqrt{\frac{N_{Ref}}{N}}$

*V. A. Smalyuk, et. al., Phys. Plasmas 12, 072703 (2005).

Does using $\sqrt{N_{Beams}}$ accurately predict experimental σ_{rms} ?

Using the 1 beam case as a reference predicts values higher than measured

LLE

The 2 beam case as a reference predicts values lower, and closer to measured for the 5 beam case

The 5 beam case over predicts for 2 beams and under predicts for 1 beam

The 5 beam case over predicts for 2 beams and under predicts for 1 beam

The larger modes of the single beam experiment are much more prevalent than expected and skew the σ_{rms} higher

Initial 2D DRACO simulations created velocity spectra to be compared to experiments

Initial 2D DRACO simulations created velocity spectra to be compared to experiments

Initial 2D DRACO simulations underestimate imprinted modulations measured in experiment

- In order to approximate experimental data initial intensity modulations were increased by a factor of 2
- This indicates that current simulations do not adequately translate intensity modulations to pressure modulations

Conclusions

Experiments using 2D-VISAR show significant imprint reduction with overlapping beams

- Imprint appears to scale closely with $1/\sqrt{N_{Beams}}$ when there are more than 2 beams
- For single beam experiments more energy was present in longwavelength mode perturbations than expected
- 2D simulations, which included beam imprint, underestimated modulations when compared to experiment

Backup

For 2D VISAR, a short probe pulse is split prior to interacting with the target

To retrieve the 2D velocity information from VISAR, create 2 short pulses, split them prior to hitting the target, then recombine them afterwards to create fringes.

P. M. Celliers, et. al., Rev. Sci. Instrum. 81, 035101 (2010)

Analysis – Azimuthally averaged spectrum of perturbations

- Modes are characterized by the same routine for both OHRV and X-Ray Radiography
 - FFT the square of the normalized perturbation image to create a 2D power spectrum
 - Radially average for each frequency mode
 - Confidence intervals are provided by the variance of the unaveraged spectra

Analysis – Azimuthally averaged spectrum of perturbations

- Modes are characterized by the same routine for both OHRV and X-Ray Radiography
 - FFT the square of the normalized perturbation image to create a 2D power spectrum
 - Radially average for each frequency mode
 - Confidence intervals are provided by the variance of the unaveraged spectra

Expected greater imprint reduction from 5 beams, results are more in line with 4 beams

Beam timings for 2 and 5 beam experiments

Face on radiography measures pR variation seeded by imprinted modulations

nearly 2 ns to grow to levels detectable above background

Targets in these experiments were driven with a square pulse $I \sim 5 \times 10^{13} \text{ W/cm}^2$

Face on radiography measures pR variation seeded by imprinted modulations

Raw data – x-ray radiography

Time ($\Delta t = 0.05 \text{ ns}$)

Example: Single time snapshot of RT grown modulation

Example: Time history of RT growth of imprint

UR