Temperature-induced changes in hP4-Sodium Electride: An Ab Initio Study

R. Paul University of Rochester Laboratory for Laser Energetics

ROCHESTER

61st Annual Meeting of the American Physical Society Division of Plasma Physics Fort Lauderdale, FL 21-25 October 2019

High-pressure dynamics of the hP4 electride* phase of sodium exhibit an unconventional insulator-to-metal transition: upon melting localized electrons become bubbles

- We have used density-functional theory (DFT) based methods to investigate the finite-temperature effects on the electride phase of Na under extreme conditions
- Our *ab initio* results indicate that the band gap of Na-electride at ~320 GPa gradually decreases with increasing temperature, until it abruptly becomes zero upon melting, due to an insulator-to-metal transition
- Melting is accompanied by coalescent dynamic electron bubbles rather than conventional uniform electron gas, as is the case for metallic liquids

LLE

Collaborators

Suxing Hu and Valentin Karasiev Laboratory for Laser Energetics (LLE)

Stanimir Bonev Lawrence Livermore National Laboratory (LLNL)

Upon high-pressure compression metallic Na has been observed to become an insulator – the electride phase (hP4) – at room temperature

^{*} E. Gregoryanz *et al.*, Science <u>320</u>, 1054 (2008) M. Marqués *et al.*, Phys. Rev. B <u>83</u>, 184106 (2011) D. Polsin *et al.*, APS SCCM (2019)

^{**} Y. Ma et al., Nature 458, 182-184 (2009)

The melt curve for Na-hP4 monotonically increases between 200 and 500 GPa

Results from calculations using PBE and SCAN-L+rVV10 xc** agree within 100 K

ROCHESTER

The melt curve for Na-hP4 monotonically increases between 200 and 500 GPa

Results from calculations using PBE and SCAN-L+rVV10 xc** agree within 100 K

ROCHESTER

The band gap along the (P = 320 GPa, T = 0 K) isochore gradually closes with increasing temperature demonstrating an abrupt insulator solid-to-metallic liquid transition

Electronic Density of States

Band gap from PBE consistently different from SCAN-L+rVV10

- Calculated from
- metallic with no band

The optical properties along the (P = 320 GPa, T = 0 K) isochore also show abrupt change upon melting as a further confirmation of metallization

Characteristic changes in optical properties observed upon melting ($T_m \sim 2000$ K), calculated using DFT with the Kubo-Greenwood formulation

The optical properties along the (P = 320 GPa, T = 0 K) isochore also show abrupt change upon melting as a further confirmation of metallization

Characteristic changes in optical properties observed upon melting ($T_m \sim 2000$ K), calculated using DFT with the Kubo-Greenwood formulation

The static Electron Localization Function (ELF) along the (P = 320 GPa, T = 0 K) isochore exhibits paired and localized interstitial electrons in solid phase

All ELF plots are on the (001) plane

The static Electron Localization Function (ELF) along the (P = 320 GPa, T = 0 K) isochore exhibits dynamic electron bubbles in liquid phase

All ELF plots are on the (001) plane

The static Electron Localization Function (ELF) along the (P = 320 GPa, T = 0 K) isochore exhibits dynamic electron bubbles in liquid phase

All ELF plots are on the (001) plane

High-pressure dynamics of the hP4 electride* phase of Sodium exhibit an unconventional insulator-to-metal transition: upon melting localized electrons become bubbles

- We have used density-functional theory (DFT) based methods to investigate the finite-temperature effects on the electride phase of Na under extreme conditions
- Our *ab initio* results indicate that the band-gap of Na-electride at ~320 GPa gradually decreases with increasing temperature, until it abruptly becomes zero upon melting, due to an insulator-to-metal transition
- Melting is accompanied by coalescent dynamic electron bubbles rather than conventional uniform electron gas, as is the case for metallic liquids

LLE

Electron Localization Function

$$\begin{aligned} \mathsf{ELF}_{\sigma}(r) &= \frac{1}{1 + \chi_{\sigma}^{2}(r)} \\ \chi_{\sigma}(r) &= \frac{D_{\sigma}(r)}{D_{\sigma}^{0}(r)} \end{aligned}$$
$$\begin{aligned} D_{\sigma}(r) &= \sum_{i=1}^{N_{\sigma}} |\nabla \Psi_{i}(r)|^{2} - \frac{1}{4} \ \frac{|\nabla \rho_{\sigma}(r)|^{2}}{\rho_{\sigma}(r)} \end{aligned}$$

