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An achromatic flying focus* can overcome the dephasing 

length limitation of laser wakefield accelerators

• An axiparabola‡ focuses annuli of a pulse to different locations creating a 

near-constant intensity over an extended distance

• Coupling the axiparabola to a novel echelon optic provides control over the 

velocity of the ponderomotive force and eliminates dephasing, depletion, 

and diffraction

• Traditional laser wakefield accelerators suffer from three limitations: 

(1) diffraction, (2) depletion, and (3) dephasing

*D. Froula et al. Nat. Physics, 12 262 (2018) 

‡S. Smartsev et al. Opt. Lett., 44 3414 (2019) 



Dephasing, diffraction, and depletion limit the energy gain in 
traditional laser wakefield accelerators
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A dephasingless LWFA can accelerate electrons to much 
higher energies than a traditional LWFA
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An axiparabola‡ focuses annuli of a pulse to different locations 
creating a near-constant intensity over an extended distance

‡S. Smartsev et al. Opt. Lett., 44 3414 (2019) 
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Coupling the axiparabola to a novel echelon optic provides
control over the velocity of the ponderomotive force

The echelon imparts a delay to each radius without introducing angular dispersion 
or chromatic focusing errors
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A dephasingless wakefield accelerator was simulated in the linear 
regime for parameters consistent with the LLE MTW laser

Laser parameters
λ = 1.054 nm

f# = 5

a0 = 0.5

Plasma parameters

length = 12 cm
ne = 3.5x1018 cm-3

! = 30 fs (FWHM)

∆f = 8 cm

The axiparabola essentially adds spherical aberration to 
extend the focal region



The dephasingless wakefield accelerates electrons to >10 more 
energy than a traditional LWFA

vf = vg vf = c 



Scaling laws* predict that dephasingless LWFA is even more 
promising in the bubble regime

*W. Lu et al. PRSTAB, 10 061301 (2007) 
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An achromatic flying focus* can overcome the dephasing 

length limitation of laser wakefield accelerators

• An axiparabola‡ focuses annuli of a pulse to different locations creating a 

near-constant intensity over an extended distance

• Coupling the axiparabola to a novel echelon optic provides control over the 
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• Traditional laser wakefield accelerators suffer from three limitations: 

(1) diffraction, (2) depletion, and (3) dephasing

*D. Froula et al. Nat. Physics, 12 262 (2018) 

‡S. Smartsev et al. Opt. Lett., 44 3414 (2019) 
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