Dephasingless laser wakefield acceleration

J.P. Palastro, J.L. Shaw, D. Ramsey, T.T. Simpson, P. Franke, S. Ivancic, K. Daub, and D.H. Froula

RÖCHESTER

61st Annual APS DPP Meeting Fort Lauderdale, FL Oct 23rd 2019

An achromatic flying focus* can overcome the dephasing length limitation of laser wakefield accelerators

- Traditional laser wakefield accelerators suffer from three limitations:
 (1) diffraction, (2) depletion, and (3) dephasing
- An axiparabola[‡] focuses annuli of a pulse to different locations creating a near-constant intensity over an extended distance
- Coupling the axiparabola to a novel echelon optic provides control over the velocity of the ponderomotive force and eliminates dephasing, depletion, and diffraction

^{*}D. Froula et al. Nat. Physics, 12 262 (2018)

[‡]S. Smartsev *et al*. Opt. Lett., 44 3414 (2019)

Dephasing, diffraction, and depletion limit the energy gain in traditional laser wakefield accelerators

Transverse spreading of the pulse reduce its intensity and the strength of the wake t Z-V_pt

The laser pulse continually loses energy driving the wakefield

Energetic electrons quickly outrun the accelerating phase of the wakefield

Dephasing, diffraction, and depletion limit the energy gain in traditional laser wakefield accelerators

Transverse spreading of the pulse reduce its intensity and the strength of the wake

The laser pulse continually loses energy driving the wakefield

UR

Energetic electrons quickly outrun the accelerating phase of the wakefield

Dephasing, diffraction, and depletion limit the energy gain in traditional laser wakefield accelerators

Transverse spreading of the pulse reduce its intensity and the strength of the wake

The laser pulse continually loses energy driving the wakefield

Energetic electrons quickly outrun the accelerating phase of the wakefield

A dephasingless LWFA can accelerate electrons to much higher energies than a traditional LWFA

Traditional LWFA Dephasingless LWFA

$$\frac{\Delta E_D}{mc^2} = \frac{\pi}{8} a_0^2 k_p L$$
accelerator length

A dephasingless LWFA can accelerate electrons to much higher energies than a traditional LWFA

 $\frac{\Delta E_D}{mc^2} = \frac{\pi}{8} a_0^2 k_p L$

accelerator length

Traditional LWFA Dephasingless LWFA

A dephasingless LWFA can accelerate electrons to much higher energies than a traditional LWFA

parabola

axiparabola

TC15081

ROCHESTER

parabola

axiparabola

TC15085

parabola

axiparabola

TC15085

Coupling the axiparabola to a novel echelon optic provides control over the velocity of the ponderomotive force

Coupling the axiparabola to a novel echelon optic provides control over the velocity of the ponderomotive force

TC15088

Coupling the axiparabola to a novel echelon optic provides control over the velocity of the ponderomotive force

TC15088a

Coupling the axiparabola to a novel echelon optic provides control over the velocity of the ponderomotive force

TC15089

Coupling the axiparabola to a novel echelon optic provides control over the velocity of the ponderomotive force

TC15091

Coupling the axiparabola to a novel echelon optic provides control over the velocity of the ponderomotive force

TC15092

Coupling the axiparabola to a novel echelon optic provides control over the velocity of the ponderomotive force

TC15093

Coupling the axiparabola to a novel echelon optic provides control over the velocity of the ponderomotive force

TC15094

Coupling the axiparabola to a novel echelon optic provides control over the velocity of the ponderomotive force

A dephasingless wakefield accelerator was simulated in the linear regime for parameters consistent with the LLE MTW laser

The dephasingless wakefield accelerates electrons to >10 more energy than a traditional LWFA

$$v_f = v_g$$
 $v_f = c$

Scaling laws^{*} predict that dephasingless LWFA is even more promising in the bubble regime

^{*}W. Lu *et al*. PRSTAB, 10 061301 (2007)

An achromatic flying focus* can overcome the dephasing length limitation of laser wakefield accelerators

- Traditional laser wakefield accelerators suffer from three limitations:
 (1) diffraction, (2) depletion, and (3) dephasing
- An axiparabola[‡] focuses annuli of a pulse to different locations creating a near-constant intensity over an extended distance
- Coupling the axiparabola to a novel echelon optic provides control over the velocity of the ponderomotive force and eliminates dephasing, depletion, and diffraction

^{*}D. Froula et al. Nat. Physics, 12 262 (2018)

[‡]S. Smartsev *et al*. Opt. Lett., 44 3414 (2019)

A dephasingless LWFA can accelerate electrons to much higher energies than a traditional LWFA

E28518a

UR LLE

Two ways to compare:

1. Equal energy over N traditional stages: $U_D = (k_p^3 L / \pi k_0^2) U_T$

2. Equal intensity:
$$U_D = (8k_p^2 L / \pi^3 k_0)U_T$$