Simulation Study of Nonlinear Saturation of Cross-Beam Energy Transfer in TOP9 Experiments at the Omega Laser Facility

K. L. NGUYEN,^{1,2} L. YIN,² B. J. ALBRIGHT,² A. M. HANSEN,¹ D. H. FROULA,¹ D. TURNBULL,¹ and J. P. PALASTRO¹ ¹University of Rochester, Laboratory for Laser Energetics ²Los Alamos National Laboratory

Summary

Pump depletion limits the gain of cross-beam energy transfer in plasmas relevant to direct-drive inertial confinement fusion

- Particle-in-cell simulations were performed to model experiments on the dedicated cross-beam energy transfer (CBET) platform, TOP9, at the Omega Laser Facility
- The simulations exhibit nonlinear processes such as ion-acoustic harmonic generation, Raman forward scattering, and ion trapping, but not at levels sufficient to saturate CBET
- Pump depletion plays the dominant role in limiting
- the CBET gain

Background and Motivation

Cross-beam energy transfer scatters laser light into unwanted directions, inhibiting inertial confinement fusion implosions

- Cross-beam energy transfer refers to the exchange of energy between two electromagnetic (EM)
 waves mediated by their mutually driven ion-acoustic wave (IAW) [1]
- The energy transfer is maximized when the phase matching conditions are satisfied

$$\vec{k}_{\text{EM1}} = \vec{k}_{\text{EM2}} + \vec{k}_{\text{IAW}}$$
 $\omega_{\text{EM1}} = \omega_{\text{EM2}} + \omega_{\text{IAW}}$

• In the presence of a plasma flow, V, the interaction can occur between frequency degenerate EM waves

 $\omega_{\rm EM1} = \omega_{\rm EM2} + \omega_{\rm IAW} - \vec{k}_{\rm IAW} \cdot \vec{V}$

• CBET disrupts both direct- and indirect-drive inertial confinement fusion (ICF)

0.0

ntegrated ICF simulations rely on ad hoc clamps to reproduce experiments, but lack insight into the mechanisms behind CBET saturation.

The TOP9 platform has been developed at LLE for focused studies of CBET in ignition-relevant parameters

Simulation and Modeling

Simulation Results

TC15128

$$\exp (G) = \frac{(1 + \beta) \exp [G_{\text{lin}} (1 + \beta)]}{1 + \beta \exp [G_{\text{lin}} (1 + \beta)]},$$