A Study of Internal Perturbation Evolution in Inertial Confinement Fusion Implosions

ROCHESTER

A specific class of hydrodynamic numerical schemes is required to recover perturbation amplification due to convergent characteristics

- ICF targets have internal defects like voids, and surface roughness that seed perturbations that degrade performance through instability growth
- Internal acoustic waves (e.g. compression/rarefaction waves) carry perturbation information throughout the shell
- Perturbations caused by internal defects are exponentially amplified by convergent characteristics
- Perturbation amplification does not follow the predicted trend in finitedifference-based fluid solvers, but is recovered when the Finite Volume Local Evolution Galerkin (FVLEG¹) scheme is used

V. N. Goncharov, T. J. B. Collins, J. A. Marozas, A. Shvydky, J. Carroll-Nellenback, P. B. Radha

University of Rochester Laboratory for Laser Energetics

ICF target imperfections seed Rayleigh-Taylor instability growth and originate from multiple sources

Radiation damage from tritium decay causes localized swelling and interfacial perturbations that seed instability growth

Ablator surface at interface **Cross section through feature** (a) 8μm CD 40-60-*µ*m DT ice DT vapor 0.5 μm μm Low density features (at room temperature)

Electron micrograph of a permeation-filled shell¹

¹D. R. Harding & W. T. Shmayda (2013) Stress- and Radiation-Induced Swelling in Plastic Capsules, Fusion Science and Technology, 63:2, 125-131

Characteristic lines describe the evolution of information in acoustic waves

In unsupported shock designs, the ice-ablator interface creates a reflected rarefaction wave during the shell acceleration phase

This rarefaction wave travels through the relaxed density profile and generates converging characteristic lines near the tail

Conservation equation for \tilde{v} $\partial_t \widetilde{v} + \partial_x [\widetilde{v}(U \pm c_s)] = 0$ **Solution:** $\widetilde{v} = \widetilde{v}_0 \left(x e^{\int^t \Gamma \, dt} \right) e^{\int^t \Gamma \, dt}$ Initial perturbation shape Growth Rate: $\Gamma = -\partial_r (U \pm c_s)$

¹ V.N. Goncharov, PO7.00001, this conference

¹ V.N. Goncharov, PO7.00001, this conference

¹ V.N. Goncharov, PO7.00001, this conference

¹ V.N. Goncharov, PO7.00001, this conference

Multi-dimension hydrodynamic simulations captured overall profile behavior; however, perturbation amplification did not follow expected trends

Multi-dimension hydrodynamic simulations captured overall profile behavior; however, perturbation amplification did not follow expected trends

Multi-dimension hydrodynamic simulations captured overall profile behavior; however, perturbation amplification did not follow expected trends

A simplified 1D survey compared simulations using two numerical schemes to understand velocity profile steepening and perturbation growth dynamics

This survey compared perturbation location, size, and grid resolution

 A scheme that explicitly incorporates characteristics is required to adequately capture steepening at the RW tail

.

 e.g. Finite-Volume Local Evolution Galerkin (FVLEG)¹

¹ Y. Sun, Y.X. Ren, J. Comp. Phys. 228 4945 (2009) ² J. Delettrez, et. al, Phys. Rev. A 36, 3926 (1987)

Profile distortions were then applied near the ice-ablator interface and tracked by the difference in velocity profiles at the rarefaction wave tail

Perturbation amplification is driven by how well steepening is captured at the tail of the rarefaction wave

FVLEG will be extended into multi-dimensions to capture perturbation growth

A specific class of hydrodynamic numerical schemes is required to recover perturbation amplification due to convergent characteristics

- ICF targets have internal defects like voids, and surface roughness that seed perturbations that degrade performance through instability growth
- Internal acoustic waves (e.g. compression/rarefaction waves) carry
 perturbation information throughout the shell
- Perturbations caused by internal defects are exponentially amplified by convergent characteristics
- Perturbation amplification does not follow the predicted trend in finitedifference-based fluid solvers, but is recovered when the Finite Volume Local Evolution Galerkin (FVLEG¹) scheme is used

