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• ICF targets have internal defects like voids, and surface roughness that 
seed perturbations that degrade performance through instability growth

• Internal acoustic waves (e.g. compression/rarefaction waves) carry 
perturbation information throughout the shell 

• Perturbations caused by internal defects are exponentially amplified by 
convergent characteristics

• Perturbation amplification does not follow the predicted trend in finite-
difference-based fluid solvers, but is recovered when the Finite Volume 
Local Evolution Galerkin (FVLEG1) scheme is used
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Summary

A specific class of hydrodynamic numerical schemes is required to recover 
perturbation amplification due to convergent characteristics

1 Y. Sun, Y.X. Ren, J. Comp. Phys. 228 4945 (2009)
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ICF target imperfections seed Rayleigh-Taylor instability growth and originate from 
multiple sources
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Electron micrograph of a permeation-filled shell1

Ablator surface at interface Cross section through feature

Radiation damage from tritium decay causes localized swelling and interfacial 
perturbations that seed instability growth

1D. R. Harding & W. T. Shmayda (2013) Stress- and Radiation-Induced Swelling in Plastic Capsules, Fusion Science and Technology, 63:2, 125-131

Low density features
(at room temperature)
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In unsupported shock designs, the ice-ablator interface creates a reflected 
rarefaction wave during the shell acceleration phase

This rarefaction wave travels through the relaxed density profile and generates converging 
characteristic lines near the tail
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Perturbations traveling along convergent characteristic lines are amplified1

Conservation equation for !"

#$!" + #& !" ' ± )* = ,

Solution: !" = !", &-∫
$ / 01 -∫

$ / 01

Initial perturbation shape

Growth Rate: 2 = −#& ' ± )*

1 V.N. Goncharov, PO7.00001, this conference
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Multi-dimension hydrodynamic simulations captured overall profile behavior; 
however, perturbation amplification did not follow expected trends
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Multi-dimension hydrodynamic simulations captured overall profile behavior; 
however, perturbation amplification did not follow expected trends
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Multi-dimension hydrodynamic simulations captured overall profile behavior; 
however, perturbation amplification did not follow expected trends
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A simplified 1D survey compared simulations using two numerical schemes to 
understand velocity profile steepening and perturbation growth dynamics

! = −$% & + ()

& + ()

1 Y. Sun, Y.X. Ren, J. Comp. Phys. 228 4945 (2009)
2 J. Delettrez, et. al, Phys. Rev. A 36, 3926 (1987)

! > + → convergent C+
• This survey compared perturbation 

location, size, and grid resolution

• A scheme that explicitly 
incorporates characteristics is 
required to adequately capture 
steepening at the RW tail

• e.g. Finite-Volume Local 
Evolution Galerkin (FVLEG)1
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Profile distortions were then applied near the ice-ablator interface and tracked by 
the difference in velocity profiles at the rarefaction wave tail
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Perturbation amplification is driven by how well steepening is captured at the tail of 
the rarefaction wave 

FVLEG

Finite-Difference

FVLEG

Finite-Difference

Distortion Amplification Profile Steepening

FVLEG will be extended into multi-dimensions to capture perturbation growth



• ICF targets have internal defects like voids, and surface roughness that 
seed perturbations that degrade performance through instability growth

• Internal acoustic waves (e.g. compression/rarefaction waves) carry 
perturbation information throughout the shell 

• Perturbations caused by internal defects are exponentially amplified by 
convergent characteristics

• Perturbation amplification does not follow the predicted trend in finite-
difference-based fluid solvers, but is recovered when the Finite Volume 
Local Evolution Galerkin (FVLEG1) scheme is used
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Summary/Conclusions

A specific class of hydrodynamic numerical schemes is required to recover 
perturbation amplification due to convergent characteristics

1 Y. Sun, Y.X. Ren, J. Comp. Phys. 228 4945 (2009)


