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Exploding pusher (XP) designs using DRACO with pump depletion provide a
pathway to higher yields while forming a platform to study laser-energy coupling

LLE

e Recent NIF XP shots in polar direct drive (PDD) induce unbounded cross-beam
energy (CBET) gain given the infinite source-term of the Randall formulation*

e Pump depletion naturally limits CBET gain by reducing the pump-field magnitude
and converges to a physically realistic solution without ad hoc multipliers
— applicable to both low- and high-intensity implosions**

e The CBET modeling with pump depletion facilitates predictive simulations

* C.J.Randall, J. R. Albritton, and J. J. Thomson, Phys. Fluids 24, 1474 (1981).
** P. W. McKenty et al., YO6.00006, this conference.

K. Anderson et al., NO5.00009, this conference.

NIF: National Ignition Facility
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Recent NIF PDD-XP experiments provide high-yield neutron sources that
challenge prior simulation capabilities
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NIF PDD-XP; 4 mm, CH shells*
12.00 e Excessive CBET gain of the PDD-XP previously

prevented converged simulations

& 1000 e CBET with pump depletion naturally controls the gain
S — results in a predictive capability without any
T 800 ad hoc multipliers
o
g 6.00 morcorp ®  Lower-intensity OMEGA simulations have also
- = Measured benefited from CBET with pump depletion**
‘g 4.00
=
()
=z 2.00 -

0.00 -

N181014 N190224 N190227 N190317

XP simulations require CBET with pump depletion because

of their higher intensity and faster implosion speeds.

* P. W. McKenty et al., YO6.00006, this conference.
** K. Anderson et al., NO5.00009, this conference.




The CBET model in DRACO now includes pump depletion, which eliminates
any need for an arbitrary prefactor and improves predictability
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Computational Cell

{expanded} e The star-shaped angular-spectrum
representation (ASR) pump-spectrum
ASR,tbound prior to interaction with a probe ray

ASR @) Pump field

AS Rinbound
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The CBET model in DRACO now includes pump depletion, which eliminates
any need for an arbitrary prefactor and improves predictability
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Computational Cell
{expanded}

AS Routbound

ASR @) Pump field

AS Rinbound

Probe ray e The probe ray enters the computational-cell
and resonantly interacts with one

component of the ASRinboum,
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The CBET model in DRACO now includes pump depletion, which eliminates
any need for an arbitrary prefactor and improves predictability
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Computational Cell
{expanded}

AS Routbound

ASR @) Pump field

AS Rinbound

Probe ray e The probe ray gains significant energy and
begins to deplete ASR; ,ound

e The ASR now has less intensity to

contribute to subsequent rays
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The CBET model in DRACO now includes pump depletion, which eliminates
any need for an arbitrary prefactor and improves predictability
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Computational Cell
{expanded} o CBET pump depletion modeling physically limits
unbounded growth, naturally controlling CBET gain

AS Routbound

- eliminates the need for an arbitrary CBET prefactor

: - achieves energy balance and conservation without
ASR 4mmm) Pump field unphysical saturation or unphysical boost
compensation used in other codes
ASR;,bound - as aresult, DRACO has greater predictive capabilities
Probe ray
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A post-shot simulation of N190707 models the relevant physics and closely
predicts the experimental DT yield (4.8 x 1075)
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N190707-001 3 mm, 18 um CH, 8 atm DT (65/35), A4, = {9.7,8.5,1.2}A, IR
| | &= 3 | |
Te)
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A new pointing pulse-shaping and dual-shock approach was attempted that
promises to extend XP yields into the 100-kJ range
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Dual shocks improve yield

The pulse shape improves separation of shell from
shock, improving yield

Steep main-pulse rise improves coupling

Simpler quad-splitting improves power imbalance

Repointing and pulse shapes yield rounder implosions




A pre-shot simulation of N190721 models the relevant physics; however,
predicted yields were higher than the experimental DT yield (2.45 x 1019)
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N190721-001 3 mm, 18 um CH, 6 atm DT (65/35), A1, = {9.7,8.5,1.2}A IR
250 —
sos 1y || DRACO: Ypr=6.99 x10%  Exp: Ypr =245 x 101° h | |
—~ 200~ preShot T;=12.8 keV T,=10.4 keV T B}
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9 100 . =
: 5
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Time (ns) Time (ns)
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A post-shot simulation of N190721 reveals the significant effect of power balance
that can be remedied via learning from the pulse-shape at low power-levels
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N190721-001 3 mm, 18 um CH, 6 atm DT (65/35), Al, = {9.7,8.5,1.2}4 IR

Experimental equatorial neutron images**:

I 90::;03 18390721-001 90-315 equatorial primary1 neutron image

sanoc.as Early time power-balance caused 300
sssozia significant oblate shell and 200
flattened Northern-hemi L==1. o
e T,
>‘-1()0
-200
00

%00 200 5 po 0

X (pm)

¢
** P. Volegov, Los Alamos National Laboratory, private communication (2019).




Shot N190721 lies on a steep performance curve and further study of equatorial
laser coupling should dramatically improve yield
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e Previous XP shots showed a steeper experimental yield cliff <6 atm
e Some attributes of N190721 cf. N190707:
— higher predicted absorption fraction; lower predicted CBET

— higher experimental convergence ratio—7.3 versus 8.4; even though it used less energy—(585 versus 495 kJ)
— better azimuthal symmetry

5 147K at 8 atm T HYDRA" Experimental polar neutron images**:
: 100Kat8atm  spline fit N190707-001 90-315 N190721-001 90-315

ar : 65 K 7 north pole neutron image north pole neutron image
o) 273 K t 8 at
S 3l fat8atm ato atm . 400 I 400 I
X
L) £
- 2 32 K'eg
g : at 8 atm 2 Uy 7] Un 7

273 K at 4 atm >
1 : e HYDRA |-
— Spline fit
0 : , , , -400 : -400 .
Density (mg/cm3) X (um) X (um)

TC15253
TC15252

* Future shots will strive to correct the oblate equatorial neutron morphology using pointing and pulse shapes
* Increasing peak power increases yield

+ A systematic scan of fill pressure and peak power at this low laser impact will help steer designs before attempting larger targets

* Yeamans, Kemp; Lawrence Livermore National Laboratory, private communication (2019). ** P, VolegcrLos Alamos National Laboratory, private communication (2019).




Summary/Conclusions

Exploding pusher (XP) designs using DRACO with pump depletion provide a
pathway to higher yields while forming a platform to study laser-energy coupling

LLE

e Recent NIF XP shots in polar direct drive (PDD) induce unbounded cross-beam
energy (CBET) gain given the infinite source-term of the Randall formulation*

e Pump depletion naturally limits CBET gain by reducing the pump-field magnitude
and converges to a physically realistic solution without ad hoc multipliers
— applicable to both low- and high-intensity implosions**

e The CBET modeling with pump depletion facilitates predictive simulations

* C.J.Randall, J. R. Albritton, and J. J. Thomson, Phys. Fluids 24, 1474 (1981).
** P. W. McKenty et al., YO6.00006, this conference.

K. Anderson et al., NO5.00009, this conference.

NIF: National Ignition Facility
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The ASR within a computational-cell tends to be star-shaped when accumulating

the contributions from every beam
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The ASR pump-spectrum peaks in a
direction corresponding to each beam

— Single cell can include both in-
bound and out-bound dominant
directions for each beam

When all contributing beams are
included the ASR object becomes
star-shaped

The lobe width, direction and strength
depends on the location in the plasma

— Each lobe can be emulated with a
{1,3,5,9} € N-point stencil in a k-
local model




A post-shot simulation of N190227 models the relevant physics and closely
predicts the experimental DT-yield (1.1e16)
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Laser-energy coupling loss caused by CBET can be mitigated in different
domains that can be combined

uR
LLE

e Spatial domain (reduction of the interaction volume)
— dynamic spot-shape changes; “zooming”
- reduces on-target energy, induces long-wavelength nonuniformity, and increases imprint
— spot-shape apodization
- static spot-shape design tailored to the target
- use optimal super-Gaussian shape while not altering imprint

e Spectral domain (wavelength detuning)
— detuning shifts resonances into lower interaction volumes
— does not induce spot-shape distortion or imprint
— all required technologies exist, i.e., no R&D; low risk
— will cause system-wide optics upgrades and downtime; high cost
— detuning is more effective in PDD

e Temporal domain
— time multiplexed pulses reduce interaction-time overlap
— requires short pulses to minimize affect on hydrodynamics
— causes increased peak power

TC12956



The interaction of crossed laser beams within an expanding
plasma causes CBET between beams
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e This stimulated Brillouin scattering (SBS)-based interaction leads to a resonance condition for
transferring energy between a pump ray and a probe ray by means of an ion-acoustic wave k *

V -
Kk fluid

pump >
<Q‘kmbe

ka = kpump_kprobe

* The resonance condition peaks when the matching condition is met

n = (wpump _a)probe) —Ka * Viuid
|kalca 17> 0; gain
171 <0;loss

TC11306b *C. J. Randall, J. R. Albritton, and J. J. Thomson, Phys. Fluids 24, 1474 (1981).
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The CBET effect is modeled by generalizing collinear interacting plane waves
to include arbitrary incidence angles and polarization*
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* The exponential CBET gain or loss factor is given by

_ e2 n. A(2Z
dTxe1=Cpol |3 m. T 1, 20T, + o, | 1) Tpump O
ASR
V 3 -
P(17) = MV a Resonance function;

(nva)2 +(1 —772)2 P =+t1/v, whenmatched; i.e.,n=+1

Matching condition
(0] - —K_ Vg,
n= ( pump Ip(robce) a " fluid n> 0: gain

| a| a 11 <0;loss

* %k

* Random polarization Cp0| is included using either a constant 1/2 factor or 1/4 {1 + [kpump . f(p,obe]z}

* Probe energy is gained or lost as E,[e9TBs edTcBeT — 1] in a cell

*C. J. Randall, J. R. Albritton, and J. J.Thomson, Phys. Fluids 24, 1474 (1981).
**ASR = angular-spectrum representation
***P, Michel, LLE/LLNL Meeting (May 2014).
TC11307b 1IBS = inverse bremsstrahlung
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The CBET interactions can be grouped roughly
into two modes
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* The laser-beam interaction for directly driven targets (symmetric or
PDD) covers a wide variety of angles, frequencies, and directions

— refraction, chirping, and multibeam geometry are responsible
Sidescatter mode Backscatter mode

Pump beam

to extract energy from
high-intensity pump rays

Probe beam

e Similar to the ring energy transfer
used for NIF indirect-drive ignition (IDI) The primary CBET mode that

* Has minimal impact on absorption reduces energy absorption

TC11305e
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The sidescatter mode causes an inbound beam-to-beam CBET exchange
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e The sidescatter mode occurs when both beams are inbound or outbound

Sidescatter mode Matching condition
Aw = @ pump ~ Wprobe = | k, ‘ C, + Ka * Viuid
lim Aw — |k, |ca McosO,
A = =
Vfluid Viiiig ~Mcar 1 | ka |ca
kprobe
Kpump Vfluid
e
ka= kpump_ kprobe ka

ka

* The resonance condition still peaks where the fluid is supersonic (small Aw)

e The | k, | is much smaller, however, and the angle Gka can be near orthogonal,
which implies that the k, * Vj,ig term no longer dominates

— the sign of the Aw can now determine gain/loss for smaller values

TC11309b



The backscatter-mode dominates CBET-losses for directly-driven targets
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The backscatter mode occurs for opposing beams

Backscatter mode

Omega experiment and simulation

Pump beam
25

‘ 1 1 1 I I I
/// kprobe 20 I‘ P
& C

’ p 652, . Incident
. bs. iment = 65% |

BET causes probe rays fluid 15 o experimen . laser
to extract energy from :

. - . . . — 66%
high-intensity pump rays fabs, simulation = 66%

)

10

Measurement ~—
’ ’

CBET

ka = kpump_kprobe

Power (

kpump

No CBET

Probe beam

s 1 |
00 05 10 15 20 25

Time (ns)
The outbound ray in backscatter mode always gains energy regardless of
color (Ady< | + 204, UV))

One of many measurements constraining simulations to
include CBET
Leads to deposition nonuniformity; mitigation can correct
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The backscatter mode dominates the CBET loss for directly driven targets
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* The backscatter mode occurs for opposing beams
Backscatter mode

Matching condition
Pump beam

Aw = @ pump ~ Dprobe = | k, ‘ C, + K * Viid
// Kprobe lim . Aw —|k,|c, McosO,
V . A = —
17F CBET causes probe rays fluid Vilia ~Mcar | ka | Ca
: to extract energy from
high-intensity pump rays
Vfluid
ka = kpump_kprobe kpump v ek
a
ka

| Probe beam

e The resonance condition peaks where the fluid is supersonic (small Aw)

* As the frequency difference increases, the resonance condition shifts to lower/higher sonic speeds
depending on the sign (e.g., M = {0.4,1.6} for +6-A UV)
— dominated by the k_, ¢ Vy,iq term; its sign determines whether there is gain/loss

— frequency difference cannot alter the gain/loss unless it can counter the large
k, * Viuiq term (e.g., £20-A UV)
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Successful wavelength detuning shifts the resonance
location sufficiently to mitigate CBET
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Blue-shifte“d

When probe rays are blue-shifted, the probe

resonance shifts to a higher Mach

number where intersecting probe rays ~ .
are negligible Red-shlﬂeq

probe

Pump beam

When probe rays are red-shifted,

the resonance shifts to a lower Mach
number where probe rays are blocked
and/or have negligible intensity

CBET extracts
energy from
the pump to
the probe ray

RefraEtivg
shadow boundary

Probe beam
e The magnitude of A4y determines the mitigation duration
— works for both symmetric and PDD
— tailoring the spot shape will help limit the required AA

TC11766f
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Four main categories of reducing laser deposition noise are included in the LLE "
raytrace; staged approach
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e Raytrace noise reduction _
Far-field plane
— An inverse-projection algorithm defines the initial ray-
positions distribution and energies -- Complete
Phase-1 - This is the primary noise reduction feature Inverse
Projection
— Dynamic adjustment of inverse-projection partially
Phase-2 compensates for refraction and reduces noise
- In progress
— Adaptive integrators
Phase-3 - Future work N
— Accurate cell-edge crossing detection using root- n Critical
polishing; never loses a ray on entry/exit < ~. \surface Refraction
Phase-4 - Future work & R C i
\ Surrogate ompensation
: \\ surface
L >

Equator




Phase-1l
€ basic inverse projection algorithm maps-out the %-critical surfaces to form a
set of aim-points in 3-D Hydra
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%-Critical surface
defined by interpolated
values along Hydra’s
radial logical-coordinate

Supports aim-point

random dithering

*  Which further
reduces noise

Aim-Points

Evenly distributed interior points

described using an isoparametric
mapping of the %-Critical surface
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Phagaﬂﬁ’asm inverse projection algorithm back-projects the aim-point distribution
onto the far-field plane to form the set of launch-points that do not bias the modal

pattern
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Rays are aimed at evenly In the far-field plane, the back-
distributed points using an projected points sample the
isoparametric mapping intensity and derive energy from
within Hydra’s cells their area projections
\ Far-field plane
. T l T | |
Back-Projected 2 e
Y %
£ { %
E o} : O -
_____ < 5 f
> -1 | ;‘q -
o | _
] | | 1 ]

-2 -1 0 1 2

%-Critical Surface X¢f (Mm)

 Once the atmosphere develops, many layers of

%-critical form the surfaces
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