Three-Dimensional Modeling of Laser–Plasma Confinement in a Strong Magnetic field

L. S. Leal University of Rochester Laboratory for Laser Energetics

ROCHESTER

61st Annual Meeting of the American Physical Society Division of Plasma Physics Fort Lauderdale, FL 21–25 October 2019

Extended MHD is needed to simulate plasma disc formation and magnetic confinement observed in laser-wire interaction experiments on Zebra

• The plasma disc is pinched and magnetically confined by the azimuthal magnetic field from the wire

- These simulations are in general agreement with the experiments at the Zebra facility using $\lambda = 1.06$ - μ m light and 1 MA of current
- A simulation using an extended magnetohydrodynamic (MHD) model captures the azimuthal plasma expansion and the evolution of plasma perturbations seen in experiments

Collaborators

A. V. Maximov, A. B. Sefkow, and R. Betti

Laboratory for Laser Energetics University of Rochester

V. V. Ivanov

University of Nevada, Reno

Studies of laser-generated magnetized plasmas have an important impact on magnetized inertial confinement fusion (ICF) and laboratory astrophysics

- Multiple magneto-inertial fusion concepts involve the interaction of magnetic fields and laser plasmas
- The coupling of laser-ablated plasmas in strong magnetic fields is also similar to magnetized astrophysical phenomena with the plasma β parameter changing from $\beta < 1$ to $\beta \gg 1$

 $\beta = \frac{nkT}{B^2/2\mu}$

TC15107

NASA/SDO/Goddard Scientific Visualization Studio D. J. Strozzi, *et al.*, No. LLNL-CONF-672979. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States), 2015 M. R. Gomez, *et al.*, Physical review letters <u>113.15</u>, 155003 (2014). J. R. Davies, *et al.*, Physics of Plasmas <u>26.6</u>, 062701 (2017).

MIFEDS: magneto-inertial fusion electrical discharge system MagLIF: magnetized liner inertial fusion NIF: National Ignition Facility LLNL: Lawrence Livermore National Laboratory

UR

The Zebra pulsed-power generator at UNR can be coupled with the Leopard laser for magnetized laser-plasma studies

- Zebra generator
 - load current 1 MA with LCM 1.7 MA*
 - current rise time 80 ns
 - storage energy 150 kJ
 - impedance 1.9 Ω

- Leopard laser
 - short pulse: 15 J, 0.35 ps
 - $I \sim 10^{19} \text{ W/cm}^2$, K = 106
 - long pulse: 35 J, 0.8 ns
 - $I \sim 6 \times 10^{15} \text{ W/cm}^2$

*V. V. Ivanov *et al.*, Plasma Phys. Control. Fusion <u>59</u>, 085008 (2017). LCM: liquid-crystal modulator UNR: University of Nevada, Reno

Disc-type plasma structures have been observed in recent experiments in megagauss magnetic fields

- The laser was focused to a spot of 30 μm with an intensity of ~3 \times 10 15 W/cm² for ~ 1 ns
- UV shadowgraphs show no disc plasma without the current
- laser probing and x-ray spectroscopy
 - -measured electron density $n_{\rm e} \sim 10^{19} \, {\rm cm}^{-3}$
 - -density in the rings of 7 \times 10 $^{18}\,cm^{-3}$
 - -electron temperature $T_e = (200 \text{ to } 400) \text{ eV}$

Cylindrical (r-z) simulations with azimuthal symmetry show axial collimation in the external magnetic field not seen without the magnetic field

UR 🔌

The magnetic-field evolution over time shows a pinching effect that leads to disc formation

- The laser pulse ablates the plasma, pushing the external field and generating Biermann battery (BB) magnetic fields $B_{BB} \sim \nabla n_e \times \nabla T_e$
- BB fields introduce asymmetry to the disc
- The magnetic field pinches down on the plasma
- As the plasma expands, the temperature drops, and magnetic fields diffuse into the disc

The extended MHD model leads to faster disc structure formation compared to the resistive MHD model

$$\vec{E} = -\frac{1}{c} \vec{U} \times \vec{B} + \vec{\eta} \times \vec{J} + \frac{\vec{J} \times \vec{B}}{cen_{e}} - \frac{\nabla \vec{P}_{e}}{en_{e}} - \frac{k}{e} \vec{\beta} \times \nabla T_{e}$$

 $\vec{E} = -\frac{1}{c} \vec{U} \times \vec{B} + \vec{\eta} \times \vec{J}$

Plasma structures are similar in simulations and experiments and measured parameters are in general agreement

6 ns after laser pulse

TC15109

Extended MHD is needed to simulate plasma disc formation and magnetic confinement observed in laser-wire interaction experiments on Zebra

- The plasma disc is pinched and magnetically confined by the azimuthal magnetic field from the wire
- These simulations are in general agreement with the experiments at the Zebra facility using $\lambda = 1.06$ - μ m light and 1 MA of current
- A simulation using an extended magnetohydrodynamic (MHD) model captures the azimuthal plasma expansion and the evolution of plasma perturbations seen in experiments

Backup

The plasma β parameter transitions from larger than unity to less than unity around the disc, and the Hall parameter changes from small to large

TC15110

The field curvature of the disc and pressure gradient suggest the possibility of interchange instability

 $\kappa \times \nabla p > 0$ allowing for possible interchange instability

