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The effects of externally applied magnetic fi elds on the performance of 
fusion targets has been an open topic of research since the inception 
of ICF and is still a topic in which our understanding can be greatly 
improved. Previous work has suggested that for high-gain 1-D targets, 
improved burn characteristics from magnetization are offset by the 
impediment of burn-wave propagation for little net improvement. 
Similar studies have shown that the application of axially aligned 
fi elds to cylindrical targets may lower the required areal density for 
ignition, but detailed analysis of burn-wave propagation in magnetized 
cylindrical targets has not been performed, aside from a cursory look 
using fl uid models relying on Braginskii transport coeffi cients. Over the 
course of the past summer, using the results of a paper by Velikovich 
et al. [1] as a foundation, work has been done to explore simulation of 
magnetized cylindrical ICF systems with 1-D magnetohydrodynamics 
using the results of a study by Basko et al. [2] with 2-D particle-
in-cell methods. Following this, initial work has been done on the 
development of a magnetized smoothed particle hydrodynamics model 
of similar systems. 
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• In the presence of magnetic 
fi elds, ignition conditions 
are modifi ed to reduce areal 
density requirements (fi gure 
adapted from [2])

• For MagLIF-type systems, 
while yield is improved by 
the presence of an axial fi eld, 
high fi eld strengths can limit 
maximum yield [3] (fi gure 
adapted from [4])

• This effect may have already 
been seen in mini-MagLIF 
experiments [4]
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• A multitude of magnetized fusion-related experiments have been of recent interest (fi gures adapted from associated references)

Magnetized spherical targets [5] MagLIF/Mini-MagLIF [6] Laser-driven magnetic 
fl ux compression [7]

Magnetized 
hohlraums [8]

MagLIF: magnetized liner inertial fusion
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1-D MHD Simulations
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• Including advection (case B), 
fi nal velocity far from wall is 
slightly higher than SA result

• Total heat loss to boundary 
closer to result without advection

• Semi-analytic (SA) solutions match 
those derived in [1]

• Numerical results without advection 
(case A) match SA solutions well

Unmagnetized results Magnetized results
Reproduced results Original results [1]

Unmagnetized parameters

Case B (x = 0) B (x = ∞) T (x = 0) T (x = ∞) |e
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Magnetized parameters

Case B (x = 0) B (x = ∞) T (x = 0) T (x = ∞) |e

C/D 0 G 1 G 0.3 keV 3 keV 5 × 10–3
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• Results including 
resistive terms but 
not thermoelectric 
terms (case C), 
match well

• Some difference in 
the fi nal value of the 
magnetic fi eld at the 
wall when thermoelectric 
terms are included

• The “plateau” region of 
the magnetic fi eld takes 
notably different shape

Looking to the future: TriForce
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• TriForce is an open-source multiphysics code for hybrid fl uid-
kinetic simulations

• Current plans for this project include the development of a MHD 
package for TriForce, utilizing smoothed particle hydrodynamics
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• Particles are accelerated at each step using the 
Boris push

• The electric potential/fi eld is calculated at each step 
using a modifi ed Gauss–Seidel method

• Injection energy is thermally broadened

• The initial direction chosen randomly from

• In the case of a magnetized system, the ICF ignition 
criterion Eq. (5) for areal density (tR) is replaced by a 
corresponding criterion for the quantity (BR) Eq. (6) [2]
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• Over the course of the past summer, preliminary work has been 
done to investigate transport in magnetized ICF systems using 
both electrostatic PIC simulations and MHD simulations

• A 1-D MHD code has been written from the ground up to 
explore the simulation of magnetized, cylindrical ICF systems

 – this code was written using the results of Velikovich, 
Giuliani, and Zalesak as a foundation [1]

 – a comparison of results is given below

ICF: inertial confi nement fusion
PIC: particle-in-cell
MHD: magnetohydrodynamic



Summary

E28824a

• Over the course of the past summer, preliminary work has been 
done to investigate transport in magnetized ICF systems using 
both electrostatic PIC simulations and MHD simulations

• A 1-D MHD code has been written from the ground up to 
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The effects of externally applied magnetic fields on the performance of 
fusion targets has been an open topic of research since the inception 
of ICF and is still a topic in which our understanding can be greatly 
improved. Previous work has suggested that for high-gain 1-D targets, 
improved burn characteristics from magnetization are offset by the 
impediment of burn-wave propagation for little net improvement. 
Similar studies have shown that the application of axially aligned 
fields to cylindrical targets may lower the required areal density for 
ignition, but detailed analysis of burn-wave propagation in magnetized 
cylindrical targets has not been performed, aside from a cursory look 
using fluid models relying on Braginskii transport coefficients. Over the 
course of the past summer, using the results of a paper by Velikovich 
et al. [1] as a foundation, work has been done to explore simulation of 
magnetized cylindrical ICF systems with 1-D magnetohydrodynamics 
using the results of a study by Basko et al. [2] with 2-D particle-
in-cell methods. Following this, initial work has been done on the 
development of a magnetized smoothed particle hydrodynamics model 
of similar systems. 
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• In the presence of magnetic 
fields, ignition conditions 
are modified to reduce areal 
density requirements (figure 
adapted from [2])

• For MagLIF-type systems, 
while yield is improved by 
the presence of an axial field, 
high field strengths can limit 
maximum yield [3] (figure 
adapted from [4])

• This effect may have already 
been seen in mini-MagLIF 
experiments [4]
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• A multitude of magnetized fusion-related experiments have been of recent interest (figures adapted from associated references)

Magnetized spherical targets [5] MagLIF/Mini-MagLIF [6] Laser-driven magnetic 
flux compression [7]

Magnetized 
hohlraums [8]

MagLIF: magnetized liner inertial fusion
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• Including advection (case B), 
final velocity far from wall is 
slightly higher than SA result

• Total heat loss to boundary 
closer to result without advection

• Semi-analytic (SA) solutions match 
those derived in [1]

• Numerical results without advection 
(case A) match SA solutions well

Unmagnetized results Magnetized results
Reproduced results Original results [1]

Unmagnetized parameters

Case B (x = 0) B (x = ∞) T (x = 0) T (x = ∞) |e

A/B 0 G 1 G 0.3 keV 3 keV 5 × 10–7

Magnetized parameters

Case B (x = 0) B (x = ∞) T (x = 0) T (x = ∞) |e

C/D 0 G 1 G 0.3 keV 3 keV 5 × 10–3

E 0 G 20 × 106 G 0.3 keV 3 keV 10
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• Results including 
resistive terms but 
not thermoelectric 
terms (case C), 
match well

• Some difference in 
the final value of the 
magnetic field at the  
wall when thermoelectric 
terms are included

• The “plateau” region of 
the magnetic field takes 
notably different shape
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• Particles are accelerated at each step using the  
Boris push

• The electric potential/field is calculated at each step 
using a modified Gauss–Seidel method

• Injection energy is thermally broadened

• The initial direction chosen randomly from

• In the case of a magnetized system, the ICF ignition 
criterion Eq. (5) for areal density (tR) is replaced by a 
corresponding criterion for the quantity (BR) Eq. (6) [2]
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Looking to the future: TriForce
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• TriForce is an open-source multiphysics code for hybrid fluid-
kinetic simulations

• Current plans for this project include the development of a MHD 
package for TriForce, utilizing smoothed particle hydrodynamics
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