Three-dimensional Gated Hot-Spot X-ray Imaging on OMEGA

ROCHESTER

Orthogonal lines-of-sight are used on OMEGA to diagnose multidimensional effects on laser direct drive (LDD) implosions

- Two time-synchronized views of the hot-spot at stagnation provide insight into the three-dimensional nature of cryogenic-layer deuterium-tritium implosions on the 60-beam OMEGA Laser System
- The core width inferred from the common axis of the two independently calibrated imagers agrees within experimental uncertainty
- Dynamic experiments were performed that demonstrate low-mode hot spot distortions in cryogenic LDD implosions can be modified through systematic offsetting of the initial target location to achieve better symmetry at stagnation and improved yield

"Three-dimensional" diagnostics provide critical information for understanding LDD implosions

Related Talks: S. Regan YO5.00002 (Tomorrow) C. Stoeckl PO7.00010

F. J. Marshall, W. Theobald, C. Sorce, O. Mannion, D. Cao, I. Igumenchev, S. P. Regan, R. C. Shah, J.P. Knauer, V. N. Goncharov, R. Betti, T. C. Sangster

Laboratory for Laser Energetics

Multidimensional effects are seeded by many sources of nonuniformity in laser direct drive

The on-target, laser energy balance and target positioning can be adjusted to compensate some sources of systematic nonuniformity.

Implosions on the OMEGA Laser System are observed along two semi-orthogonal lines of sight with gated x-ray imagers capable of 30-ps temporal resolution and 10- μ m spatial resolution

ROCHESTER

Analyzing the flux along the common-viewing axis* allows two lines-of-sight to measure the same quantity

microns

- In the case of TRXI and KBFRAMED, that vector lies along H2-H20
- Find the projection of the common-view vector in each imagers' view
- Integrate the image perpendicular to the projected vector
- The analysis is conducted on two time-aligned images

The integrated emissivity in the plane perpendicular to the common-view axis is identical in both imagers for an optically thin shell.

*L. R. Benedetti et al, Rev. Sci. Instrum. 10G105 (2018).

The inferred size along the common axis between SLOS-TRXI and KBFRAMED agrees within experimental uncertainty

common-axis projection (μ m)

*L. Claus et al., Proc. SPIE 9591, 95910P (2015).

Viewing the hot-spot from several directions gives a sense of uncompensated asymmetry at stagnation for nominal laser pointing, balance, and target positioning

The hot-spot is considerably more round and centrally peaked as viewed by both imagers when a calculated offset is applied to the target

In this case the target was offset by 48 μm

Increasing the offset more led to degraded performance

UR

Control over low-mode hot-spot distortion is demonstrated through systematic offsetting based on inputs from multi-dimensional diagnostics

BRÖĈI

Orthogonal lines-of-sight are used on OMEGA to diagnose multidimensional effects on laser direct drive (LDD) implosions

- Two time-synchronized views of the hot-spot at stagnation provide insight into the three-dimensional nature of cryogenic-layer deuterium-tritium implosions on the 60-beam OMEGA Laser System
- The core width inferred from the common axis of the two independently calibrated imagers agrees within experimental uncertainty
- Dynamic experiments were performed that demonstrate low-mode hot spot distortions in cryogenic LDD implosions can be modified through systematic offsetting of the initial target location to achieve better symmetry at stagnation and improved yield

"Three-dimensional" diagnostics provide critical information for understanding LDD implosions

Related Talks: S. Regan YO5.00002 (Tomorrow) C. Stoeckl PO7.00010

