Three-dimensional hydrodynamic modeling of OMEGA direct-drive cryogenic

implosions with the highest fusion yield

3-D ASTER simulations of shot 90291 with imprint

End of acceleration t=2.1 ns

OCHESTER

I. V. Igumenshchev University of Rochester Laboratory for Laser Energetics 61st Annual Meeting of the American Physical Society Division of Plasma Physics Fort Lauderdale, FL 21 - 25 October 2019

Summary

Known 3-D asymmetry effects can not be currently identified as dominant

performance degradation mechanisms of high-yield OMEGA direct-drive implosions

- Performance degradation in high-yield cryogenic OMEGA implosions was studied using the 3-D hydrodynamic code ASTER¹
- These implosions are relatively stable with respect to laser imprinting, indicating that other performance-degradation mechanisms are present
- The role of low-mode perturbations (mostly mode *l* = 1) and surface defects in performance degradation can be significant, but it is uncertain because of uncertainties in initial conditions

¹ Igumenshchev *et al.*, Phys. Plasmas **23**, 052702 (2016).

R. Betti, E.M. Campbell, D. Cao, C.J. Forrest, V.N. Goncharov, V. Gopalaswamy, J.P. Knauer, O.M. Mannion, D. Patel, S.P. Regan, <u>R.C. Shah</u>, and A. Shvydky

University of Rochester Laboratory for Laser Energetics

The Optimization Campaign¹ on OMEGA led to the highest neutron yield in

cryogenic DT direct-drive implosions

Extrapolated constant fusion yield curves for 1.9 MJ of laser energy

¹ V. Gopalaswamy et al., Nature 565, 581 (2019)

Measured directional variations of ρR and T_{ion} in shot 90291 indicate the presence

Laser pulse and simulated shell

trajectory and neutron history

of low-mode asymmetries

Target dimensions

Adiabat $\alpha \approx 4.5$

Measured and simulated performance of shot 90291

	<i>N</i> _n (10 ¹⁴)	P _{hs} (Gbar)	ρR (mg/cm²)	T _{ion} (keV)
Experiment	1.31±0.09	52±7	182±25 150±13	5.5±0.39 4.53±0.32
1-D sim.	2.83	99.6	202	4.20

Various hydrodynamic mechanisms reducing implosion performance were

assessed using 3-D ASTER simulations

- Laser imprint \rightarrow Development of small-scale perturbations
- Low-mode asymmetries → Directional (mode l = 1) plasma flow in the hot spot¹
- Surface defects \rightarrow Injection of ablating materials inside the hot spot

Not included:

• Mount stalk \rightarrow Jetting the cold fuel and possibly ablator materials into the hot spot

- O. Mannion, TO5.00002, this meeting
- Z. Mohamed, YO5.00008, this meeting

¹ R. Shah, YO5.00001, this meeting

S. Regan, YO5.00002, this meeting

3-D simulations suggest that imprint alone moderately affects the performance of shot 90291

Relative neutron yield (3-D over 1-D) = 0.812

¹ Igumenshchev, Velikovich, Goncharov et al. PRL 123, 065001 (2019)

Results of the experimental campaign¹ with varying laser smoothing (by SSD) also

suggest that imprint is not the major factor reducing neutron yield

Shown implosions have adiabat $\alpha \approx 4.5$

¹ J. Knauer, YO5.00004, this meeting

Simulations become closer to measurements if significant low-mode perturbations

are included

Simulations:

- Imprint
- Imprint and 20-µm offset (resulting in V_{hot spot} ≈ 50 km/s[†])

 Recent experiments indicate that the OMEGA laser can unintentionally introduce a mode l = 1 asymmetry equivalent to about 20 to 50 µm target offset (under investigation)[‡]

[†] O. Mannion, TO5.00002, this meeting [‡] S. Regan, YO5.00002, this meeting

Surface defects and their distributions can contribute to the observed implosion

asymmetry and performance degradation of shot 90291

50 surface defects (2-µm dip and 10-µm diam) assumed in ASTER simulations

Several tens of surface defects are typically observed in pre-shot target images

Highly asymmetric distributions in some cases

* YOU is the neutron yield over the yield in uniform (1-D) simulations

Various hydrodynamic mechanisms reducing implosion performance were

assessed using 3-D ASTER simulations

- Laser imprint → Development of small-scale perturbations
- Low-mode asymmetries \rightarrow Directional (mode $\ell = 1$) plasma flow in the hot spot
- Surface defects \rightarrow Injection of ablating materials inside the hot spot

Not included:

• Mount stalk \rightarrow Jetting the cold fuel and possibly ablator materials into the hot spot

The effect is small in 2-D* Is it important in 3-D?

UR

The effect is small

May be important

May be important

* Igumenshchev et al., Phys. Plasmas 16, 082701 (2009).

Various hydrodynamic mechanisms reducing implosion performance were

assessed using 3-D ASTER simulations

- Laser imprint → Development of small-scale perturbations
- Low-mode asymmetries \rightarrow Directional (mode $\ell = 1$) plasma flow in the hot spot
- Surface defects \rightarrow Injection of ablating materials inside the hot spot

Not included:

• Mount stalk \rightarrow Jetting the cold fuel and possibly ablator materials into the hot spot

More work is needed to identify the dominant performance degradation mechanism

In	e	ett	ect	IS	sm	a

May be important

May be important

The effect is small in 2-D* Is it important in 3-D?

^{*} Igumenshchev et al., Phys. Plasmas **16**, 082701 (2009).

Summary/Conclusions

Known 3-D asymmetry effects can not be currently identified as dominant

performance degradation mechanisms of high-yield OMEGA direct-drive implosions

- Performance degradation in high-yield cryogenic OMEGA implosions was studied using the 3-D hydrodynamic code ASTER¹
- These implosions are relatively stable with respect to laser imprinting, indicating that other performance-degradation mechanisms are present
- The role of low-mode perturbations (mostly mode *l* = 1) and surface defects in performance degradation can be significant, but it is uncertain because of uncertainties in initial conditions

New diagnostics are being developed for better target characterization and resolving the problem of the mode-1 asymmetry

¹ Igumenshchev *et al.*, Phys. Plasmas **23**, 052702 (2016).