Density Measurements of the Inner Shell Release

D. Haberberger University of Rochester Laboratory for Laser Energetics

ROCHESTER

61st Annual Meeting of the American Physical Society Division of Plasma Physics Fort Lauderdale, FL 21–25 October 2019

Summary

Measurements of the low-density plasma ahead of a driven CH shell indicate that the shell profile is relaxed before the shock breaks out of the undriven side

- A platform was developed to study the time history of the low-density plasma release ahead of a driven shell
- Streaked x-ray radiography was used to track the driven shell and an optical probe to track the underdense plasma ahead of the shell
- Hydrodynamic simulations are shown to agree with the experimental measurements when a gradient is added to the back side of the CH shell

LLE

Collaborators

A. Shvydky, V. N. Goncharov, D. Cao, J. Carroll-Nellenback, S. X. Hu, S. T. Ivancic, V. V. Karasiev, J. P. Knauer, A. V. Maximov, and D. H. Froula

> University of Rochester Laboratory for Laser Energetics

Motivation

The low-density plasma ahead of the inner shell can have a detrimental effect on ICF target performance

101 Laser Mass density (g/cm³) **10**⁰ 6 10-1 (arbitrary units) **79624**, α = **10** 4 Intensity 10-2 α = 7 **79626**, α = **7** $\alpha = 3$ 2 10⁻³ 1-D 10-4 0 300 200 100 100 200 0 Distance (μ m) $R(\mu m)$ TC13694a

Density release inconsistent with the design adiabat can be the culprit in early hot-spot emission and has not been experimentally measured.

*DPP: distributed phase plate

The x-ray radiography using ~1.5-keV (AI He_{\alpha}) photons tracked the driven shell position across 700 μm over 5 ns

Space

- Spatial resolution ~20 to 25 μm as measured by the undriven shell and Ta edge
- Spatial synchronization with the 4ω diagnostic obtained by the undriven shell position

Time

Temporal synchronization with the 4ω diagnostic obtained through a timing fiducial with an accuracy of ± 20 ps

Optical interferometry and angular filter refractometry (AFR)* were used to track the low-density plasma expansion on the back side of the driven shell

*D. Haberberger *et al.*, Phys. Plasmas <u>21</u>, 056304 (2014). FWHM: full width half max

The measured shell trajectory along with the low-density released plasma are compared to *LILAC* hydrodynamic simulations

E28636

The density profile on the back side of the CH shell before the shock breaks out was found to strongly affect the rarefaction expansion

E28637

The density profile on the back side of the CH shell before the shock breaks out was found to strongly affect the rarefaction expansion

ROCHESTER

Summary/Conclusions

Measurements of the low-density plasma ahead of a driven CH shell indicate that the shell profile is relaxed before the shock breaks out of the undriven side

- A platform was developed to study the time history of the low-density plasma release ahead of a driven shell
- Streaked x-ray radiography was used to track the driven shell and an optical probe to track the underdense plasma ahead of the shell
- Hydrodynamic simulations are shown to agree with the experimental measurements when a gradient is added to the back side of the CH shell

LLE

Backup

When the shock driven through the CH traverses the lower-density material at the back of the shell, it heats it to a higher temperature and therefore expands faster

The effect of a relaxed DT ice layer in a cryogenic implosion simulation was studied by depositing energy on the inner surface of the DT

Nominal: 900- μ m shell, triple-picket drive

Expanded: 10 J deposited on the inner 10 μ g of DT ice layer before the main drive

	Nominal	Expanded
T _i (keV)	3.17	2.64
ho R (mg/cm ²)	179	146
Yield	8.1 × 10 ¹³	3.8×10^{13}

A possible mechanism for the relaxation of the shell is radiation preheat by coronal x rays

- According to *LILAC*, the x-ray energy absorbed over the shock transit time is 10 kJ/cm³
- Using 1400-to 1900-K/kg/J specific heat, this increases the temperature of CH to 0.4 to 0.6 eV
 - molecular bonds are broken and the solid can decompress
- The width of the density gradient is estimated as 4 $C_{s,CH} \times \frac{1}{2} t_{shock} = 3$ to 4 μ m
 - $C_{s,CH}$ = 2350 m/s for solid CH or 3500 using ideal gas at 0.5 eV
 - $t_{\rm shock} = 600 \text{ ps}$ (time to traverse CH shell)

Estimating the preheat-induced decompression is difficult because solid-state dynamics are not modeled in hydrodynamic codes.

