A Survey of Different Perturbation Amplification Mechanisms in the Early Stages of Inertial Confinement Fusion Implosions

V. N. Goncharov University of Rochester Laboratory for Laser Energetics

ROCHESTER

61st Annual Meeting of the American Physical Society Division of Plasma Physics Fort Lauderdale, FL 21–25 October 2019 Summary

Acoustic waves evolving into shocks play a critical role in determining instability seeding at the early stages of ICF implosions

- Perturbations of fluid velocity in a simple acoustic wave are exponentially amplified if the wave travels in the direction of convergent characteristics (i.e., wave front steepens)
- Time variation in the drive pressure or a wave reflection from various material interfaces in the ablator cause acoustic wave steepening at the early stages of an ICF implosion
- Accurate multi-dimensional modeling of the evolution of such waves is challenging but critical for defining seeds for the Rayleigh-Taylor instability developed during shell acceleration

There are several sources of Rayleigh-Taylor (RT) seeding in ICF targets

There are several sources of Rayleigh-Taylor (RT) seeding in ICF targets

- Complex hydrodynamic evolution of shell nonuniformity seeds can only be fully captured multidimensional simulations. To ensure code prediction validity:
 - Theoretical analysis of different evolution mechanisms must be performed
 - Focused experiments must be carried out at high resolution (ideally less than 1 μm, zone plates will help*)

^{*}F. Marshall UO7.1

Commonly known mechanisms for the seed evolution describe mainly the surface features and laser imprint

Internal ice and ablator nonuniformities evolve with the acoustic waves launched by the drive pressure variations and wave interactions with material interfaces

^{*}S. Miller, next talk; V. Goncharov, APS 18

Internal ice and ablator nonuniformities evolve with the acoustic waves launched by the drive pressure variations and wave interactions with material interfaces

Internal ice and ablator nonuniformities evolve with the acoustic waves launched by the drive pressure variations and wave interactions with material interfaces

Beginning of shell acceleration

Prior to forming a shock, the steepening front of an acoustic wave travels along converging characteristics

Steepening front in compression wave 2.0 ρ (g/cm³) P (×10 Mbar) 1.5 1.0 0.5 0.0 380 390 400 410 Distance (µm)

LLE

Velocity perturbation amplitude is amplified along converging characteristics

' Initial shape

Perturbation amplification at the steepening fronts were studied by solving linearized hydrodynamic equations

As the first decaying shock passes through the DT–CH interface, the velocity perturbation gets amplified near the tail of reflected rarefaction

Compression wave steepening leads to perturbation amplification

*see next talk by S. Miller

Summary

Acoustic waves evolving into shocks play a critical role in determining instability seeding at the early stages of ICF implosions

- Perturbations of fluid velocity in a simple acoustic wave are exponentially amplified if the wave travels in the direction of convergent characteristics (i.e., wave front steepens)
- Time variation in the drive pressure or a wave reflection from various material interfaces in the ablator cause acoustic wave steepening at the early stages of an ICF implosion
- Accurate multi-dimensional modeling of the evolution of such waves is challenging but critical for defining seeds for the Rayleigh-Taylor instability developed during shell acceleration

