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A Survey of Different Perturbation Amplification Mechanisms in the Early Stages of 
Inertial Confinement Fusion Implosions
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Summary

• Perturbations of fluid velocity in a simple acoustic wave are exponentially amplified if the 
wave travels in the direction of convergent characteristics (i.e., wave front steepens)

• Time variation in the drive pressure or a wave reflection from various material interfaces in 
the ablator cause acoustic wave steepening at the early stages of an ICF implosion

• Accurate multi−dimensional modeling of the evolution of such waves is challenging but 
critical for defining seeds for the Rayleigh−Taylor instability developed during shell 
acceleration

Acoustic waves evolving into shocks play a critical role in determining 
instability seeding at the early stages of ICF implosions
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There are several sources of Rayleigh−Taylor (RT) seeding in ICF targets
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There are several sources of Rayleigh−Taylor (RT) seeding in ICF targets

time

Power

• Complex hydrodynamic evolution of shell nonuniformity seeds can only be fully captured multi-
dimensional simulations. To ensure code prediction validity:

- Theoretical analysis of different evolution mechanisms must be performed

- Focused experiments must be carried out at high resolution (ideally less than 1 µm, zone plates 
will help*)

*F. Marshall UO7.1
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Commonly known mechanisms for the seed evolution describe mainly the surface 
features and laser imprint
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The physics of these effects are well understood and modeled in hydrocodes. 
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Internal ice and ablator nonuniformities evolve with the acoustic waves launched by 
the drive pressure variations and wave interactions with material interfaces
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Internal ice and ablator nonuniformities evolve with the acoustic waves launched by 
the drive pressure variations and wave interactions with material interfaces
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Internal ice and ablator nonuniformities evolve with the acoustic waves launched by 
the drive pressure variations and wave interactions with material interfaces
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Prior to forming a shock, the steepening front of an acoustic wave travels along 
converging characteristics

Characteristics of acoustic wave
with steepening front
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Velocity perturbation amplitude is amplified along converging characteristics

• Simple acoustic wave !" = $%& !'
• Adiabatic flow " ∼ $), !" = %&+!$
Perturbed momentum equation:

,-!' + !',/0 + 0,/!' = −,/!"$ + !$
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Conservation equation for !':
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Perturbation amplification at the steepening fronts were studied  by solving 
linearized hydrodynamic equations
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Perturbations are initialized by the pressure perturbation
!+ = !+* 1 567(94)
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As the first decaying shock passes through the DT−CH interface, the velocity 
perturbation gets amplified near the tail of reflected rarefaction 
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Compression wave steepening leads to perturbation amplification
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Do commonly used ICF codes accurately capture this perturbation amplification* ?

*see next talk by S. Miller 
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Summary

• Perturbations of fluid velocity in a simple acoustic wave are exponentially amplified if the 
wave travels in the direction of convergent characteristics (i.e., wave front steepens)

• Time variation in the drive pressure or a wave reflection from various material interfaces in 
the ablator cause acoustic wave steepening at the early stages of an ICF implosion

• Accurate multi−dimensional modeling of the evolution of such waves is challenging but 
critical for defining seeds for the Rayleigh−Taylor instability developed during shell 
acceleration

Acoustic waves evolving into shocks play a critical role in determining 
instability seeding at the early stages of ICF implosions


