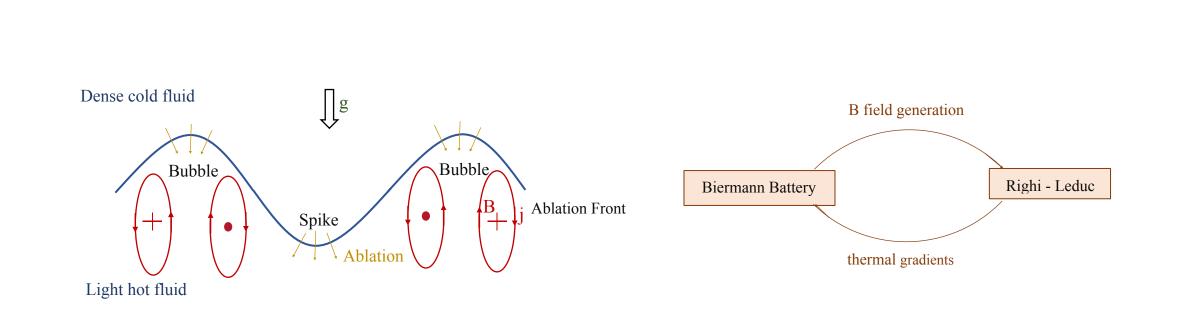
The Effect of Self-Generated Magnetic Fields on the Ablative Rayleigh-Taylor Instability Dynamics



F. Garcia-Rubio University of Rochester Laboratory for Laser Energetics 61st Annual Meeting of the APS Division of Plasma Physics Fort Lauderdale, Florida October 23, 2019

The B-field is self-generated during the Rayleigh-Taylor instability, but it is weakly coupled and its effect is small in the linear regime for moderate Rem

- The self-generated magnetic field modifies the hydrodynamics by bending the heat flux lines via the Righi-Leduc term
- The Righi-Leduc term becomes important for perturbation wavelengths comparable to the distance between the ablation front and the critical surface, but computations show that the hydro B field coupling is relatively weak
- The Darrieus-Landau instability dominates over the magneto-thermal instability in the subdense region

Self-generated B field stabilizes the RTI up to a 20% in growth rate

Collaborators

Riccardo Betti

University of Rochester Laboratory for Laser Energetics Department of Mechanical Engineering

Hussein Aluie University of Rochester Department of Mechanical Engineering

Javier Sanz Recio

Universidad Politécnica de Madrid School of Aerospace Engineering

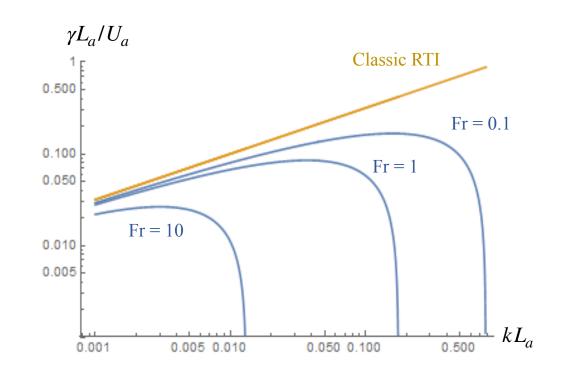
Ablation fronts in Inertial Confinement Fusion are Rayleigh-Taylor unstable

$$\gamma = 0.9\sqrt{kg} - 3kU_a$$

• Froude Number

$$Fr = \frac{Convection}{Gravity} = \frac{U_a^2}{gL_a}$$

Ablation stabilizes the RTI. The Froude number becomes the governing parameter

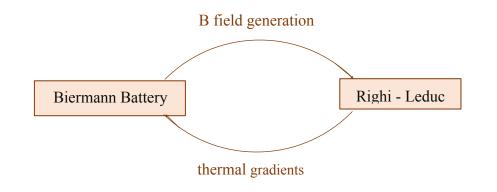


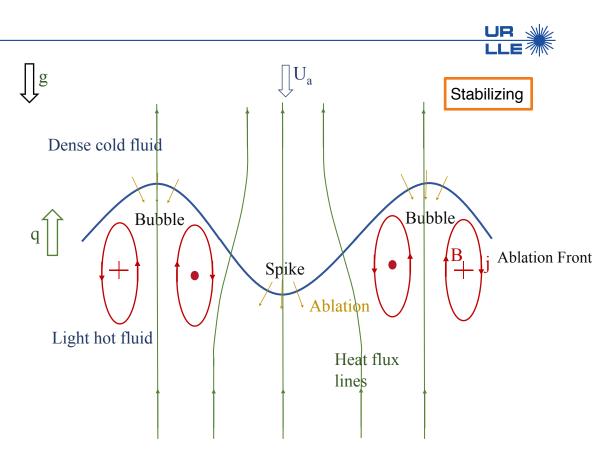
During the Rayleigh-Taylor instability, the B-Field is self-generated due to the Biermann-Battery term

• Biermann battery term:

$$\frac{\partial \overrightarrow{B}}{\partial t} \sim \frac{\nabla p \times \nabla n}{n^2} \propto \frac{\partial \overrightarrow{\omega}}{\partial t}$$

- The magnetic field modifies the hydrodynamics
 - Linear term: **Righi-Leduc** $\overrightarrow{q}_{\mathsf{RL}} \sim -\frac{T^4}{n} \overrightarrow{B} \times \nabla T$
- Magnetothermal Instability





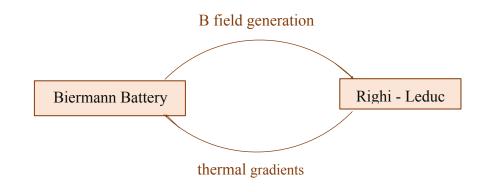
The Righi-Leduc effect bends the heat flux lines

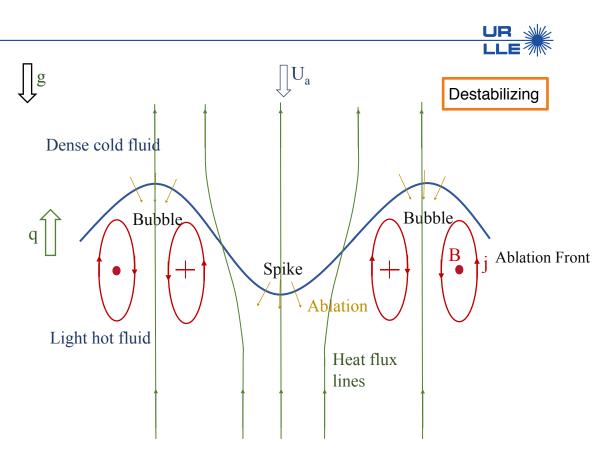
During the Rayleigh-Taylor instability, the B-Field is self-generated due to the Biermann-Battery term

• Biermann battery term:

$$\frac{\partial \overrightarrow{B}}{\partial t} \sim \frac{\nabla p \times \nabla n}{n^2} \propto \frac{\partial \overrightarrow{\omega}}{\partial t}$$

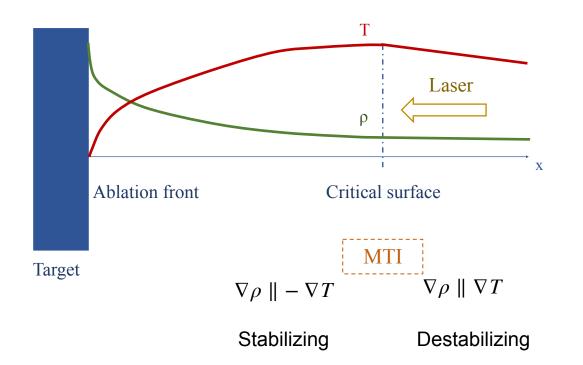
- The magnetic field modifies the hydrodynamics
 - Linear term: **Righi-Leduc** $\vec{q}_{RL} \sim -\frac{T^4}{n} \vec{B} \times \nabla T$
- Magnetothermal Instability





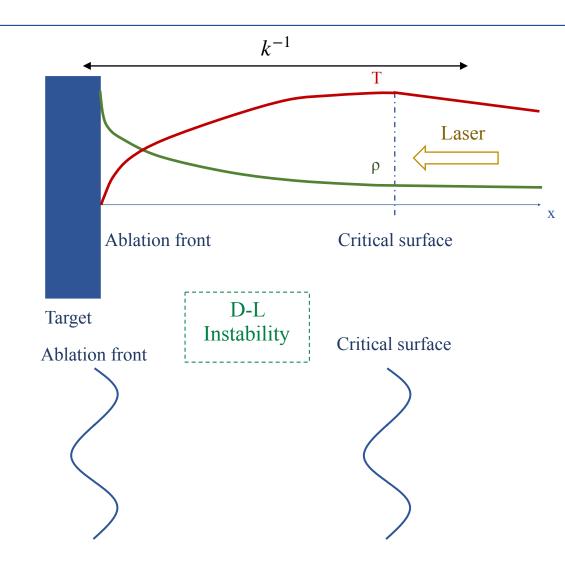
The Righi-Leduc effect bends the heat flux lines

The magneto-thermal instability takes place together with hydrodynamic instabilities



- Ablative Rayleigh-Taylor Instability (ART)
 - Sanz, Phys. Rev. Let. 73, 20 (1994)
 - Nishiguchi, Jpn. J. Appl. Phys. Vol. 41 (2002)
- Darrieus-Lanadu Instability (DL)
 - Sanz, Masse and Clavin, Phys. Plasmas 13, 102702 (2006)
- Magneto-Thermal Instability (MTI)
 - Tidman and Shanny, Phys. Fluids 17, 1207 (1974)
 - Haines Can. Journal of Physics 64(8) (1986)

The magneto-thermal instability takes place together with hydrodynamic instabilities



- Ablative Rayleigh-Taylor Instability (ART)
 - Sanz, Phys. Rev. Let. 73, 20 (1994)
 - Nishiguchi, Jpn. J. Appl. Phys. Vol. 41 (2002)
- Darrieus-Lanadu Instability (DL)
 - Sanz, Masse and Clavin, Phys. Plasmas 13, 102702 (2006)
- Magneto-Thermal Instability (MTI)
 - Tidman and Shanny, Phys. Fluids 17, 1207 (1974)
 - Haines Can. Journal of Physics 64(8) (1986)

We use a magnetohydrodynamic model with Braginskii's expressions for transport terms

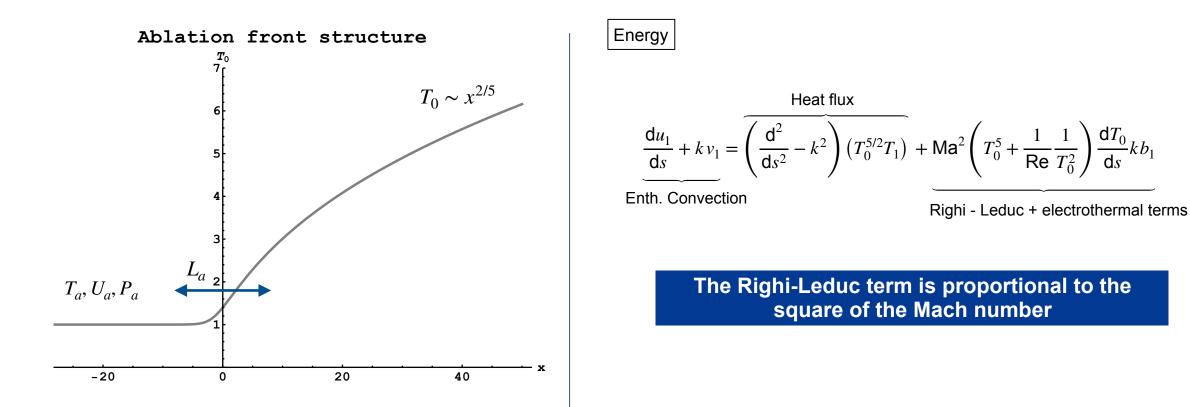
Induction equation

 $\frac{\partial \vec{B}}{\partial t} + \underbrace{\frac{c}{c} \nabla n \times \nabla p}_{en^2} - \underbrace{\frac{B-Convection}{\nabla \times \left(\vec{v} \times \vec{B}\right)}}_{\nabla \times \left(\vec{v} \times \vec{B}\right)} + \underbrace{\frac{B-Diffusion}{\frac{c^2 \alpha_0 m_e}{4\pi e^2} \nabla \times \left(\frac{1}{n\tau} \nabla \times \vec{B}\right)}_{ent} =$

$$= \underbrace{\frac{c}{4\pi e} \left(1 + \frac{\alpha_0^{''}}{\delta_0}\right) \nabla \times \left[\frac{1}{n} \overrightarrow{B} \times \left(\nabla \times \overrightarrow{B}\right)\right]}_{\text{Hall}} + \underbrace{\frac{c\beta_0^{''}}{\delta_0 m_e} \nabla \times \left(\tau \overrightarrow{B} \times \nabla T\right)}_{\text{Nernst}}.$$

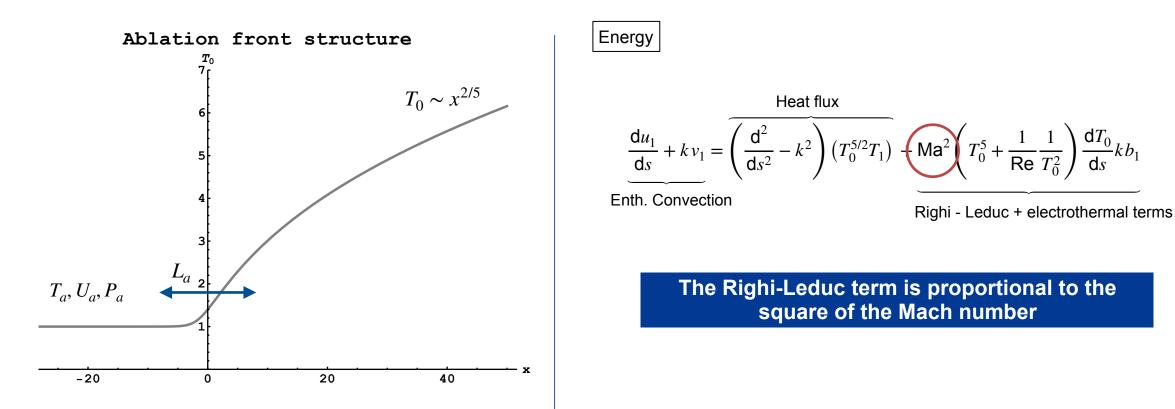
A linear analysis of the equations has been performed to derive the stability spectrum

Ansatz: $q = q_0(x) + q_1(x)\exp(\gamma t + iky)$

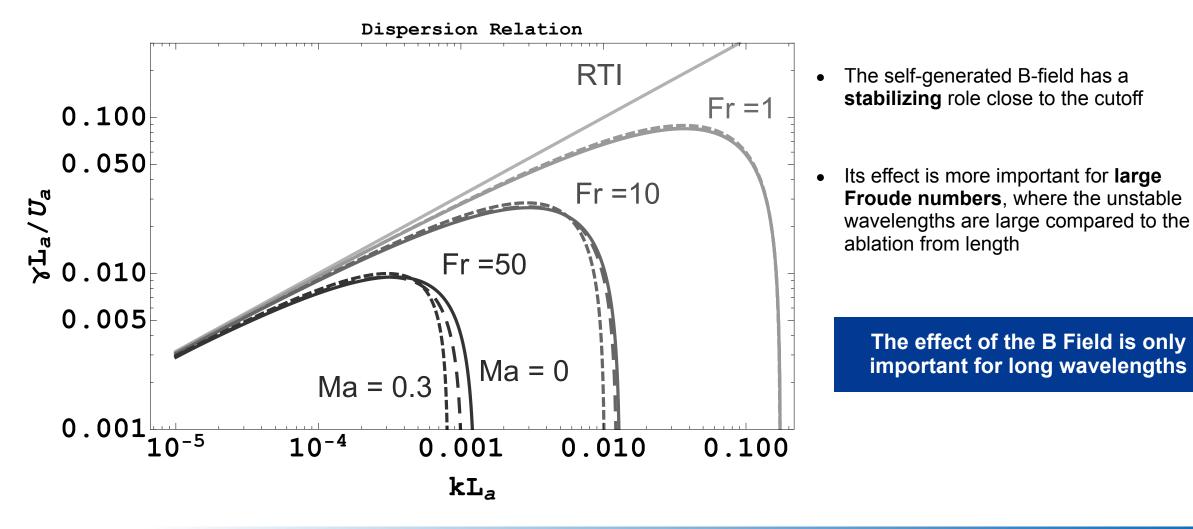


A linear analysis of the equations has been performed to derive the stability spectrum

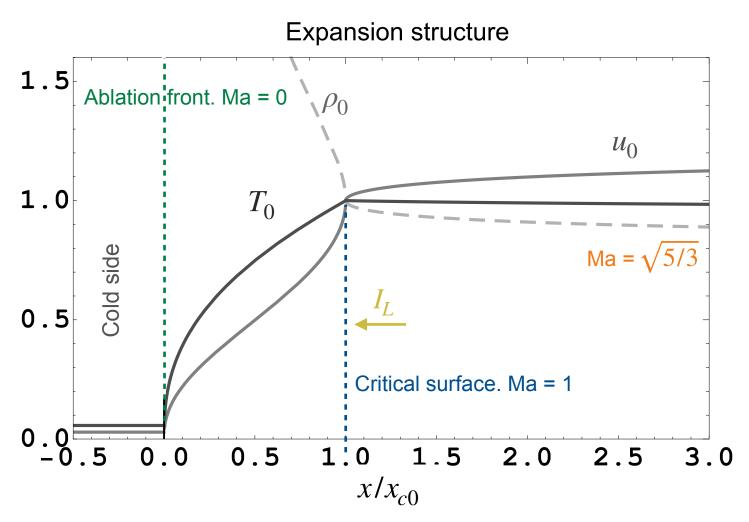
Ansatz: $q = q_0(x) + q_1(x)\exp(\gamma t + iky)$



Dispersion relation for isobaric ablation fronts with self-generated B-fields



A consistent model needs to consider non-isobaric effects and perturb the critical surface



Ablation front

 $x_a = \xi_a \exp(\gamma t + iky)$

Critical surface

 $x_c = x_{c0} + \xi_c \exp(\gamma t + iky)$

- Boundary conditions:
 - Perturbed Mach number = 1
 - Unbounded thermal mode $\sim \exp(\lambda_T s)$
 - Unbounded magnetic mode $\sim \exp(\lambda_B s)$

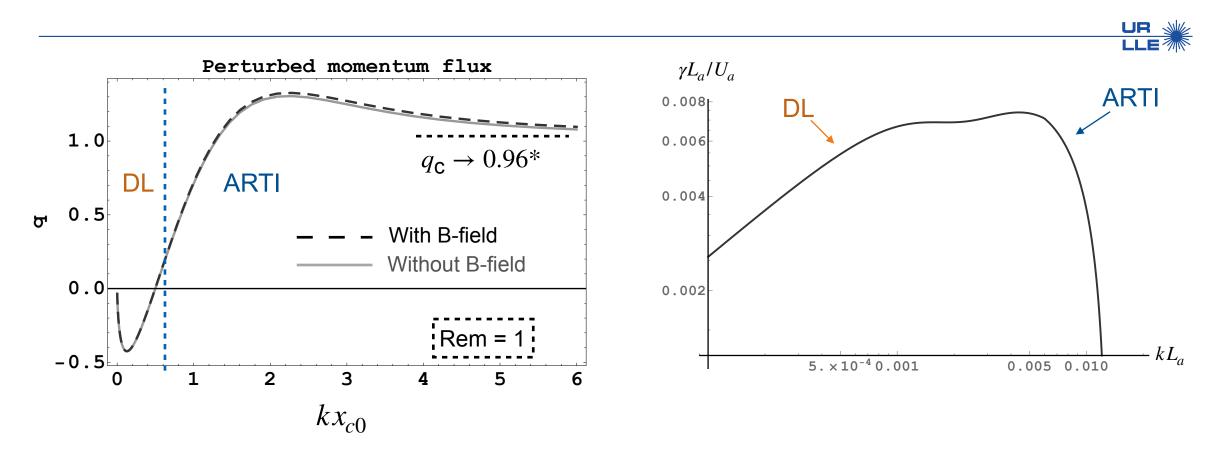
A consistent model needs to consider non-isobaric effects and perturb the critical surface

Expansion structure Perturbed mass and momentum fluxes 1.5 $\rho_0 u_1 + \rho_1 u_0 = fk \quad Ma$ $2u_1 + \rho_1 u_0^2 + p_1 = qk^{3/5}$ Mass Ablation front. Ma = 0 ρ_0 Momentum u_0 1.0 **Dispersion relation** T_0 $Ma = \sqrt{5/3}$ Cold side $\gamma^{2} + k(1+f)\gamma - k^{2}f - \frac{k}{Fr}(1-qFrk^{3/5}) = 0$. 0.5 . 1 . . $Fr \gg 1$ Critical surface. Ma = 1 $\gamma = \sqrt{\frac{k}{\mathrm{Fr}} \left(1 - q \mathrm{Fr} k^{3/5}\right)}$ 0.0^E _0 3.0 0.5 2.5 2.0 5 1:0 1.5 0.0 x/x_{c0}

A consistent model needs to consider non-isobaric effects and perturb the critical surface

Expansion structure Perturbed mass and momentum fluxes 1.5 $\rho_0 u_1 + \rho_1 u_0 = fk \quad Ma$ $2u_1 + \rho_1 u_0^2 + p_1 = qk^{3/5}$ Mass Ablation front. Ma = 0 ρ_0 Momentum u_0 1.0 **Dispersion relation** T_0 $Ma = \sqrt{5/3}$ Cold side $\gamma^{2} + k(1+f)\gamma - k^{2}f - \frac{k}{Fr}(1-qFrk^{3/5}) = 0$ х. 0.5 . . $Fr \gg 1$ Critical surface. Ma = 1 $\gamma = \sqrt{\frac{k}{\mathrm{Fr}} \left(1 - q \mathrm{Fr} k^{3/5}\right)}$ 0.0^E _0 3.0 0.5 2.5 2.0 5 1:0 1.5 0.0 x/x_{c0}

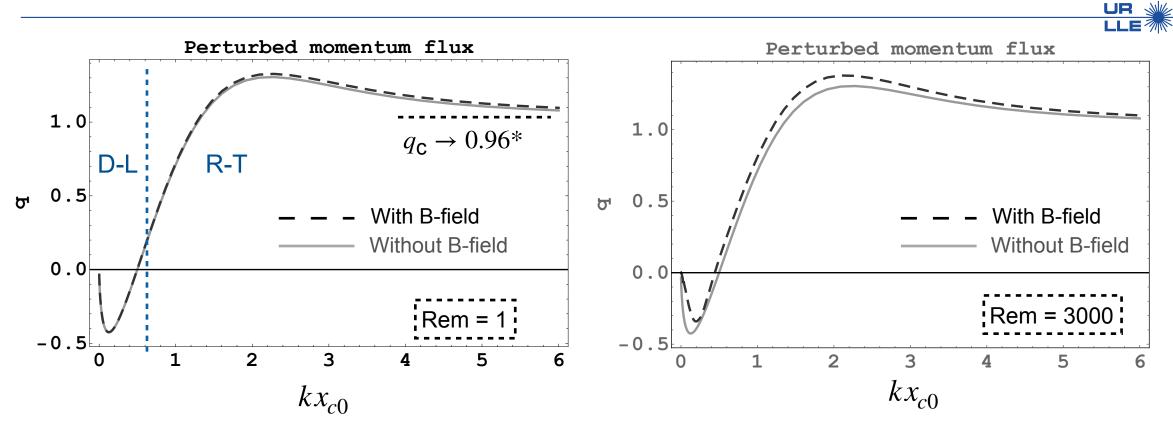
The effect of the B field is small for Rem ~ O(1)



The self-generated B-field stabilizes \sim 5% for low Rem

* Sanz, Phys. Review Letters 73, 20 (1994), Sanz Phys. Review E 53, 4 (1996)

Increasing Rem enhances the stabilizing effect of the B field, but it remains small for moderate Rem



The self-generated B-field stabilizes up to \sim 20% for moderate Rem

* Sanz, Phys. Review Letters 73, 20 (1994)

The B-field is self-generated during the Rayleigh-Taylor instability, but it is weakly coupled and its effect is small in the linear regime for moderate Rem

- The self-generated magnetic field modifies the hydrodynamics by bending the heat flux lines via the Righi-Leduc term
- The Righi-Leduc term becomes important for perturbation wavelengths comparable to the distance between the ablation front and the critical surface, but computations show that the hydro B field coupling is relatively weak
- The Darrieus-Landau instability dominates over the magneto-thermal instability in the subdense region

Self-generated B field stabilizes the RTI up to a 20% in growth rate

