
1

The Effect of Self-Generated Magnetic Fields on the Ablative Rayleigh-Taylor Instability Dynamics

F. Garcia-Rubio 
University of Rochester 
Laboratory for Laser Energetics

61st Annual Meeting of the APS Division of 
Plasma Physics 

Fort Lauderdale, Florida 
October 23, 2019

Dense cold fluid

Light hot fluid

g

Spike

BubbleBubble

Ablation Front

Ablation

jB
Biermann Battery Righi - Leduc

B field generation

thermal gradients



Summary/Conclusions
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• The self-generated magnetic field modifies the hydrodynamics by bending the 
heat flux lines via the Righi-Leduc term 

• The Righi-Leduc term becomes important for perturbation wavelengths 
comparable to the distance between the ablation front and the critical surface, but 
computations show that the hydro - B field coupling is relatively weak 

• The Darrieus-Landau instability dominates over the magneto-thermal instability in 
the subdense region

The B-field is self-generated during the Rayleigh-Taylor instability, but it is weakly 
coupled and its effect is small in the linear regime for moderate Rem

Self-generated B field stabilizes the RTI up to a 20% in growth rate
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• Dispersion relation: Takabe formula   

• Froude Number

Ablation fronts in Inertial Confinement Fusion are Rayleigh-Taylor unstable

Ablation stabilizes the RTI. The Froude number 
becomes the governing parameter
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• Biermann battery term: 

• The magnetic field modifies the hydrodynamics 

• Linear term: Righi-Leduc 

• Magnetothermal Instability

During the Rayleigh-Taylor instability, the B-Field is self-generated due to the Biermann-Battery term

The Righi-Leduc effect bends the heat flux lines
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• Ablative Rayleigh-Taylor Instability (ART) 

• Darrieus-Lanadu Instability (DL) 

• Magneto-Thermal Instability (MTI)

• Tidman and Shanny, Phys. Fluids 17, 1207 (1974) 

• Haines Can. Journal of Physics 64(8) (1986)

• Sanz, Masse and Clavin, Phys. Plasmas 13, 102702 (2006)

• Nishiguchi, Jpn. J. Appl. Phys. Vol. 41 (2002)

• Sanz, Phys. Rev. Let. 73, 20 (1994)

The magneto-thermal instability takes place together with hydrodynamic instabilities
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We use a magnetohydrodynamic model with Braginskii’s expressions for transport terms
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A linear analysis of the equations has been performed to derive the stability spectrum
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The Righi-Leduc term is proportional to the 
square of the Mach number
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• The self-generated B-field has a 
stabilizing role close to the cutoff 

• Its effect is more important for large 
Froude numbers, where the unstable 
wavelengths are large compared to the 
ablation from length
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Dispersion relation for isobaric ablation fronts with self-generated B-fields

The effect of the B Field is only 
important for long wavelengths
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A consistent model needs to consider non-isobaric effects and perturb the critical surface
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A consistent model needs to consider non-isobaric effects and perturb the critical surface
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The self-generated B-field stabilizes  5% for low Rem∼

qc → 0.96*

Without B-field
With B-field

* Sanz, Phys. Review Letters 73, 20 (1994),                
Sanz Phys. Review E 53, 4 (1996)
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Increasing Rem enhances the stabilizing effect of the B field, but it remains small 
for moderate Rem

The self-generated B-field stabilizes up to  20% for moderate Rem∼
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