Fourth-Generation Laser for Ultra-Broadband Experiments—Expanding the
ICF Design Space Through Mitigation of Laser Plasma Instabilities
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A Fourth-Generation Laser for Ultra-broadband eXperiments (FLUX) is being
built to demonstrate the laser technologies at scale and provide a broadband
beam on OMEGA for LPI studies
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Simulations predict Aw/®w>1% laser bandwidth will mitigate LPI in direct-drive implosions

« An ultrawide bandwidth (Aow/®>1%) UV long-pulse laser is being developed at LLE

« Efficient (>75%) amplification efficiency (narrow 1o->broadband 1w) has been
demonstrated at high-powers

« Summed frequency generation (broadband 1w + narrow band 2w->broad band 3w) is
currently being tested as an efficient method to create broadband UV light
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For direct-drive experiments, the maximum drive pressure is set

by the intensity threshold for hot-electron generation
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Solutions to expand the ICF design space by mitigating LPI

must consider both CBET and TPD instabilities.
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LPI modeling predicts that Aw/® > 1% bandwidth can mitigate both CBET and hot-

electron generation in hydrodynamic-equivalent ignition implosions on OMEGA
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Two-Plasmon Decay
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Increasing Aw/®>1% will mitigate both
CBET and hot electrons and allow for

hydro-equivalent ignition
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Improved imprint will further expand
the direct-drive design space by
increasing the hydro-stability threshold
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From the beginning of laser-plasma instability research (1970s)*, theory showed
that bandwidth could mitigate LPI, but glass lasers could not support it
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High-bandwidth technologies developed to support short-pulse lasers are

being used at LLE to build the next-generation driver for ICF LR
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Adapting the Noncolinear OPA provides an efficient broadband amplifier

Proposed Co-Linear OPA Amplifier
Technology
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Joule level experiments demonstrate

high efficiency amplification
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The co-linear OPA provides efficient conversion (>75%) of narrow
band 2 light to broadband 1w
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A novel summed frequency generation concept is being tested
to efficiently produce broadband UV light
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LPSE was used to determine the ideal bandwidth format when
considering collinear optical parametric amplification
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A Fourth-Generation Laser for Ultra-broadband eXperiments (FLUX) is
being built as an additional laser beam on OMEGA UR

LLE

Broadband front The FLUX laser will feed the
OMEGA LPI Platform
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The FLUX laser will be used with the LPI Platform on OMEGA to test
the effects of bandwidth on CBET and hot electron generation
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A successful technology demonstration (FLUX) will lead to a design
for an upgraded OMEGA with ultra-wide bandwidth
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A conceptual layout for a “OMEGA FLUX-60" leverages the
existing infrared laser system, target area, and diagnostics
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