Broadband mitigation of laser-plasma instabilities

Temporal incoherence of the drive lasers can be used to suppress laser-plasma instabilities (LPIs)

- Laser-plasma instabilities limit the laser intensity that can be used in inertial confinement fusion (ICF) implosions
- The key factor in determining the effectiveness of a bandwidth scheme at suppressing instabilities is the coherence time

A future broadband laser based on optical parametric amplifiers is currently being developed at LLE

Collaborators

J. G. Shaw, D. H. Edgell, D. H. Froula, C. Dorrer, J. Bromage, E. Hill, T. Kessler, A. Maximov, A. Solodov, M. Campbell and J. P. Palastro

University of Rochester Laboratory for Laser Energetics

J. F. Myatt

University of Alberta

J. W. Bates, J. L. Weaver

Naval Research Laboratory

In direct-drive ICF implosions, TPD and SRS can lead to hot-electron preheat

EMW: electromagnetic wave EPW: electron plasma wave

In direct-drive ICF implosions, TPD and SRS can lead to hot-electron preheat

EMW: electromagnetic wave EPW: electron plasma wave

LLE code development for laser plasma interaction physics is centered around a common environment

- LPSE (Laser plasma simulation environment)
- Solves 3-D time-enveloped vector wave equations (no paraxial approximation)
- Two-plasmon decay (TPD)⁽¹⁻²⁾
- Cross-beam energy transfer (CBET)⁽³⁻⁷⁾
- Stimulated Raman scattering (SRS)
- Resonance absorption⁽⁸⁾
- Quasilinear Landau damping and hot-electron production⁽⁹⁻¹⁰⁾
- Arbitrary beam injection with speckle, polarization smoothing, and bandwidth⁽¹¹⁾

⁽¹⁾ R. K. Follett *et al.*, Phys. Rev. E <u>91</u>, 031104 (2015)
⁽²⁾ R. K. Follett *et al.*, Phys. Plasmas <u>24</u>, 102134 (2017)
⁽³⁾ J. F. Myatt *et at.*, Phys. Plasmas <u>24</u>, 056308 (2017)
⁽⁴⁾ R. K. Follett *et al.*, Phys. Plasmas <u>24</u>, 103128 (2017)
⁽⁵⁾ J. W. Bates *et al.*, Phys. Rev. E <u>97</u>, 061202 (2018)
⁽⁶⁾ R. K. Follett *et al.*, Phys. Rev. E <u>98</u>, 043202 (2018)
⁽⁷⁾ A. Colaitis *et al.*, Phys. Plasmas <u>26</u>, 032301 (2019)
⁽⁸⁾ J. P. Palastro *et al.*, Phys. Plasmas <u>26</u>, 123104 (2018)
⁽⁹⁾ R. K. Follett *et al.*, Phys. Rev. Lett. <u>116</u>, 155002 (2016)
⁽¹⁰⁾ R. K. Follett *et al.*, Phys. Rev. Lett. <u>120</u>, 135005 (2018)
⁽¹¹⁾ R. K. Follett *et al.*, Phys. Plasmas <u>26</u>, 062111 (2019)

LPSE is a Community code (LLE, NRL, University of Alberta, CELIA, and RAL)

log10[|\$(V)

Laser bandwidth can be used to suppress the growth of the absolute TPD mode

HESTER

Electron plasma wave k-spectrum for a plane-wave drive beam (I= $3x10^{14}$ W/cm², L_n= 162.5μ m, T_e=2 keV)

Laser bandwidth can be used to suppress the growth of the absolute TPD mode

ROCHESTER

There are many different bandwidth formats that can be used to suppress LPI

Different bandwidth formats provide varying degrees of instability mitigation

The various types of bandwidth give similar thresholds when plotted in terms of the laser coherence time

The various types of bandwidth give similar thresholds when plotted in terms of the laser coherence time

Degree of coherence: $g(\tau) \equiv \frac{\langle E_0^*(t)E_0(t+\tau)\rangle}{\langle |E_0(t)|^2 \rangle}$

Coherence time:

$\tau_c \equiv \int_{-\infty}^{\infty} |g(\tau)|^2 d\tau$

FR

A large number of LPSE simulations were run to generate scaling laws for absolute SRS and TPD with a broadband pump

SRS thresholds

Monochromatic*:

TPD thresholds

Monochromatic**:

Broadband[†]:

Broadband:

*B. B. Afeyan and E. A. Williams, Phys. Fluids 28, 3397 (1985).
**A. Simon, et al., Phys. Fluids 26, 3107 (1983).
*R. K. Follett, et al., Phys. Plasmas 26, 062111 (2019).

High-bandwidth technologies developed to support short-pulse lasers are

being used at LLE to build a next-generation driver for ICF

Temporal incoherence of the drive lasers can be used to suppress laser-plasma instabilities (LPIs)

- Laser-plasma instabilities limit the laser intensity that can be used in inertial confinement fusion (ICF) implosions
- The key factor in determining the effectiveness of a bandwidth scheme at suppressing instabilities is the coherence time

A future broadband laser based on optical parametric amplifiers is currently being developed at LLE

Different bandwidth formats provide varying degrees of instability mitigation

HESTER

*R. K. Follett et al., Phys. Plasmas 26, 062111 (2019)