Mixing at the fuel-ablator interface in backlit OMEGA cryogenic implosions

T. J. B. Collins University of Rochester Laboratory for Laser Energetics 61st Annual Meeting of the American Physical Society Division of Plasma Physics Fort Lauderdale, FL 21 October–25 October 2019

Simulated radiographs of backlit OMEGA implosions provide a sensitive measure of both fuel-ablator mixing and the unablated CH

- Moderate- and low-adiabat cryogenic implosions have been backlit with OMEGA EP*
- 2-D DRACO simulations, post-processed with Spect3D,[†] show substantial agreement with experimental radiographs only when modeling includes greater unablated CH, either due to thicker shells or a reduced mass ablation rate
- 2-D simulated radiographs have been generated which complement lineouts by showing signatures of multidimensional effects

^{*} C. Stoeckl et al., Rev. Sci. Instrum. 85, 11E501 (2014)

[†] PrismSPECT, Prism Computational Science Inc., Madison, WI 53711

Collaborators

C. Stoeckl, R. Epstein, S. Miller, J. A. Marozas, K. Anderson, D. Cao, O. Mannion, R. Betti, J. A. Delettrez, W. Bittle, C. J. Forrest, V. Yu. Glebov, V. N. Goncharov,
D. R. Harding, I. V. Igumenshchev, D. W. Jacobs-Perkins, R. J. Janezic, J. H. Kelly,
T. Z. Kosc, C. Mileham, D. T. Michel, R. L. McCrory, P. W. McKenty, F. J. Marshall,
S. F. B. Morse, P. B. Radha, S. P. Regan, B. Rice, T. C. Sangster, M. J. Shoup III,
W. T. Shmayda, C. Sorce, W. Theobald, J. Ulreich, and M. D. Wittman

> University of Rochester Laboratory for Laser Energetics

J. A. Frenje, M. Gatu Johnson, and R. D. Petrasso

Plasma Science and Fusion Center Massachusetts Institute of Technology

Low- and moderate-adiabat cryogenic implosions which straddle the stability boundary* were backlit with OMEGA EP

- A crystal imager^{**} was used to produce a shortpulse (40-ps), monochromatic Si He_α x-ray backlighting source
- Radiographic lineouts for the moderate adiabat implosion reproduce the shell absorption and limb darkening due to unablated CH
- Due to the moderate adiabat of this implosion, the depth of the shadow cast by the shell is largely unaffected by mixing due to imprint

DRACO simulations of the low-adiabat implosion show signatures of imprint-induced mix of CH into the DT fuel layer

- 2-D DRACO simulations have been performed incorporating CBET and NL electron heat transport
- DRACO and Spect3D* have been used to generate synthetic radiographs incorporating the experimental noise spectrum
- DRACO simulations with a $\times\sqrt{2}$ increase in the nominal imprint level produce a shadow depth comparable to the experimental value but fail to reproduce the radial extent of the shadow

DRACO simulations of the low-adiabat implosion show signatures of imprint-induced mix of CH into the DT fuel layer

- 2-D DRACO simulations have been performed incorporating CBET and NL electron heat transport
- *DRACO* and Spect3D* have been used to generate synthetic radiographs incorporating the experimental noise spectrum
- DRACO simulations with a $\times\sqrt{2}$ increase in the nominal imprint level produce a shadow depth comparable to the experimental value but fail to reproduce the radial extent of the shadow

Low-mode target and drive uniformities affect the shape of the core emission but do not affect the shadow cast by the cold shell

- Low modes result in hot-spot flows which affect the shape of core emission and target performance* and have been systematically addressed experimentally**
- Unlike imprint and low-mode perturbations, unablated CH is able to affect the optical depth out to the mix region, potentially affecting the shadow width

Unablated CH may be the result of a reduced ablation rate

- Coronal self-emission imaging provides high-resolution tracking of the ablation front and experimental measurement of the ablation rate*
- A measurable delay in the CH burn-through time is observed in typical cryogenic implosions suggesting a lower mass ablation rate than that predicted by laser coupling and thermal transport models
- DRACO simulations of backlit implosions are underway with an improved CBET model** to determine its effects on the simulated ablation rate

Modeling with unablated CH and elevated imprint reproduces the experimental shadow for the low-adiabat implosion

- The measured pre-shot ablator thickness is $11.2 \pm 0.5 \ \mu m$
- An ablator thickness of 11.5 μ m, within the measurement uncertainty, causes the mix region to shift in by ~10 μ m, resulting in greater absorption and a wider shell shadow
- It is possible with current techniques to measure the ablator thickness with a precision of ~ $\pm 0.1 \ \mu$ m
- The low target performance ($Y_{exp}/Y_{sim} \sim 10\%$) and core temperature (simulated $T_{ion} = 2.56 \text{ keV} > T_{exp} = 2.4 \text{ keV}$) for these shots suggest additional mix* may be transporting carbon to the core

Simulated radiographs of backlit OMEGA implosions provide a sensitive measure of both fuel-ablator mixing and the unablated CH

- Moderate- and low-adiabat cryogenic implosions have been backlit with OMEGA EP*
- 2-D DRACO simulations, post-processed with Spect3D,[†] show substantial agreement with experimental radiographs only when modeling includes greater unablated CH, either due to thicker shells or a reduced mass ablation rate
- 2-D simulated radiographs have been generated which complement lineouts by showing signatures of multidimensional effects

^{*} C. Stoeckl et al., Rev. Sci. Instrum. 85, 11E501 (2014)

[†] PrismSPECT, Prism Computational Science Inc., Madison, WI 53711

Backup slides

• ...

Variations in imprint level can be seen in the shell shadow in synthetic radiographs

RÖCHESTER

Neither low modes nor viewing angle is capable of reproducing the width of the ice shadow in the experimental radiograph

400

300

(ມາ 200 ⊼

100

0

•

۰

1.60

1.28

0.96

0.64

0.32

0.00

1.60

1.28

0.96

0.64

0.32

0.00

82717

500

82717

500

400

Simulations with a 0.3 μm thicker ablator more closely reproduce the depth and width of the shadow cast by the ice

Röchester

Simulations with a 0.3 μm thicker ablator more closely reproduce the depth and width of the shadow cast by the ice

DRACO simulations of the low-adiabat shot show imprint efficiently transports carbon deep into the shell, but not the core

- 2-D DRACO simulations of shot 82717 were performed with varying levels of imprint
- The depth of the shadow cast by the shell requires transport of carbon deep into the shell

Mass density, shot 82717; α = 1.9

DRACO simulations of the low-adiabat shot show imprint efficiently transports carbon deep into the shell, but not the core

- 2-D DRACO simulations of shot 82717 were performed with varying levels of imprint
- The depth of the shadow cast by the shell requires transport of carbon deep into the shell

CH mass density, shot 82717; α = 1.9

Isolated perturbations at the fuel-ablator interface have also been proposed as a possible seed for fuel-ablator mix

- The calculated hot-spot T_{ion} (with imprint) is 2.56 keV, greater than the experimental value of 2.4 keV (T_{min} =1.8 keV, ΔT ~0.6 keV), suggesting additional mix may be responsible for reduction in core temperature and target performance
- Radiation from tritium decay in permeation-filled targets can cause localized perturbations at the inner shell surface
- OMEGA cryogenic targets are estimated to have ~10² micron-sized features with < 0.1 μ m amplitude
- Many features would be needed to cause mix without being visible as individual features in backlighter radiographs
- Similar isolated features at the ablation surface and in the shell have been shown to be capable of transporting ablator material into the core*
- Voids in the ice and defects at the material interface may also contribute to mixing

I. V. Igumenshchev et al., Phys. Plasmas 20, 082703 (2013)

The fuel-ablator interface is a classical interface, stable to Rayleigh-Taylor (RT) growth during acceleration but susceptible to Richtmyer-Meshkov growth

- The interface has a negative Atwood number until halfway through the drive, and is ablated soon after
- Interface perturbations are expected to experience some small RT growth due to post-picket rarefaction waves and Richtmyer-Meshkov (RM), but little RT growth during the acceleration phase

A simulation of an isolated fuel-ablator perturbation shows signs of localized mixing and transport of DT into the corona

• The interaction of the planar shock with the feature perturbation generates vorticity which is magnified by subsequent shocks, and the post-shock rarefactions generate further RTI perturbation growth

A simulation of an isolated fuel-ablator perturbation shows signs of localized mixing and transport of DT into the corona

• Shocks launched by the second and third pickets and the drive pulse interact with reflected waves to broaden the range of influence of the localized features

A simulation of an isolated fuel-ablator perturbation shows signs of localized mixing and transport of DT into the corona

• A modest amount of interfacial mixing is sufficient to provide a channel for the DT to ablate

• The simulation below is underway

ROCHESTER

Comparison of moderate- and low-adiabat backlit cryogenic implosions* shows a drop in performance for the lower-adiabat implosion

LILAC							Experiment		
Shot	α	IFAR	V _{imp} (<i>µ</i> m/ns)	<i>ρ</i> R (mg cm ⁻²)	T _{i,LILAC} (keV)	Y _{LILAC} (10 ¹³)	<i>ρ</i> R/clean	T _{i,Exp} (keV)	YOC
81590	2.5	10	240	250	2.2	1.4	78%	2.7	19%
82717	1.9	14	280	246	2.4	2.6	41%	2.4	8%

- The pulse and dimensions of the backlit implosions were chosen to straddle the stability boundary**
- Offsets are small (~10 μm)
- $I_{1/4} \sim 3 \times 10^{14} \text{ W cm}^{-2}$
- CR~24

- * C. Stoeckl et al., Phys. Plasmas 24, 056304 (2017);
- R. Epstein *et al.*, HEDP <u>23</u>, 167 (2017)
- ** V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014).

IFAR: In-flight aspect ratio V_{imp} : Peak shell implosion speed ρR : Shell areal density

α = P/P_{fermi} Y: Neutron yield

YOC, Yield over clean: Ratio of experimental to 1-D yield

CR: Convergence ratio

Ion mass diffusion has been investigated as a possible carbon transport mechanism

- The ablator–fuel interface introduces a boundary in ion concentration, driving flow across the interface
- Mass diffusion has been demonstrated in the context of OMEGA exploding pushers* and is tied to similar effects such as baro- and thermodiffusion and nonequilibrium shock-species separation

$$\mathbf{i} = \underbrace{-\rho D \left(\nabla c + k_p \nabla \log p_i + \frac{ek_E}{T_i} \nabla \Phi + k_T^{(i)} \nabla \log T_i + k_T^{(e)} \nabla \log T_e \right)}_{\text{on-electron-thermal}} \underbrace{\frac{ek_E}{T_i}}_{\text{in-electron-thermal}} \nabla \Phi + k_T^{(i)} \nabla \log T_i + k_T^{(e)} \nabla \log T_e \right)$$

- 2-D ion mass diffusion has been implemented in *DRACO*, with flux J_k calculated by Fick's First Law,** $J_k = -D_k \nabla n_k$, where D_k is the diffusion coefficient, and n_k is the ion number density, using a momentum-conserving collision frequency based on Simakov and Molvig (2016)[‡]
- The classical diffusion coefficient is given by[†] $D_k \sim v_{th}^2 \tau = \frac{(\langle Z \rangle + 1)kT}{\langle A \rangle v_{k,l \neq k}} \sim \frac{T^{5/2}}{n}$
- Ion mass diffusion will be important when temperature is high and density is low, when $Kn = \lambda_1 / L_{hvdro} > 1$
- For these implosions the diffusion coefficient does rise to ~10² μ m²/ns but only late in time
 - * H. G. Rinderknecht *et al.*, Phys. Rev. Lett. <u>112</u>, 135001 (2014); P. Amendt, C. Bellei, S. Wilks, Phys. Rev. Lett. <u>109</u>, 075002 (2012); C. Bellei and P. Amendt, Phys. Plasmas <u>24</u>, 040703 (2017); P. Amendt, *et al.*, Phys. Rev. Lett. <u>105</u>, 115005 (2010); etc.
 - ** R. Bird, et al., Transport Phenomena 2nd Ed., (2007) 525; R. Present and L. Schiff, Kinetic Theory of Gases (1958) 145; H. G. Rinderknecht, Phys. Rev. Lett. 112, 135001 (2014)
 - [†] P. Amendt, C. Bellei, S. Wilks, Phys. Rev. Lett. <u>109</u>, 075002 (2012)
 - * A. N. Simakov, K. Molvig, Phys. Plasmas 23, 032115 (2016)

The pulse and dimensions of the backlit implosions were chosen to straddle the stability boundary*

- A threshold factor ~IFAR/α^{1.1} has been found to correlate with areal density degradation and performance (and YOC has a weaker correlation indicating a stability threshold)
- A peak power of ~18 TW and a thicker shell were optimized for backlighter exposure times
- The YOC for these shots is low, even for the more stable shot (81590), consistent with an extended coasting time and slower implosion speed

* V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014).

There is significant variation in the signal in the backlighter region

• Improvements in this diagnostic have led to a ×5 increase in backlighter brightness (Stoeckl APS 2018)

The ρ R/clean is still less than 1, suggesting the need for an expanded modal range and possibly other forms of mix

- A simulation modeling up to mode 200 shows negligible differences in the radiographic lineout
- For sqrt(2) imprint, IRIS calculates T_{ion}=2.56 keV, greater than the experimental value of 2.4 keV (T_{min}=1.8 keV, range~0.6 keV), suggesting addition mix may be responsible for reduction in core temperature

Low modes have a minimal impact on radiographic signatures

- An imprint run was conducted including beam mispointing, beam mistiming, power imbalance and ice roughness
- These modes cause a noticeable distortion of the core emission but not the observed shell attenuation

