Direct Measurements of Hot-Electron Preheat in the Dense Fuel
of Inertial Confinement Fusion Implosions
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Preheat in cryogenic implosions is directly inferred by comparison
of hard x rays between all-plastic and DT layered implosions
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» Differences in hard x-ray signhals between mass-equivalent all-CH and cryo implosions
can be used to infer hot-electron energy deposition into the payload

 Hot-electron deposition into the payload increases proportionally with the payload mass

« Modeling of these experiments indicated an ~10-20% degradation in areal density as a
result of hot-electron preheat for typical a = 4 designs

A similar experimental campaign is underway on the NIF to assess the viability of direct
drive on the NIF

NIF: National Ignition Facility
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* Hot-electron preheat and the preheat formula
 Hot-electron transport experiments and modeling on OMEGA

 Hot-electron transport experiments on the NIF
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* Hot-electron preheat and the preheat formula
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Hot-electrons from laser—plasma interactions can preheat the DT fuel,
thereby raising the adiabat and degrading the areal density

UR
LLE

0.61 . 0.34
0.12 Yield
Lawson parameter y = (PRg/cmZ) ( = 16)

M stag,mg

e «a = shell adiabat

0.35 p0.14,2
Ek Pmaxvimp o
X~ 084 « Ey = shell kinetic energy
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 P,.x = ablation pressure

* Mg,, =stagnated DT mass

Hot electrons increase the adiabat and degrade performance

* C. Zhou et al., Phys. Plasmas 15, 102707 (2008).
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Previous studies* of hot-electron transport on OMEGA suggest
that hot electrons intersect the target at a large divergence angle

or are transported isotropically uR
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Although the divergence of electrons was measured, the exact amount

coupled into the dense fuel of cryo implosions is still unknown.

TCS: type quartz crystal spectrometer HXR: hard x ray
XRS: x-ray spectrometer MC: moving cryostat * B. Yaakobi et al., Phys. Plasmas 20, 092706 (2013).
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A single hard x-ray measurement in a cryo implosion cannot discriminate
between hard x rays emitted from electrons slowing down in DT versus CD
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HXRD: hard x-ray diagnostic
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Hot-electron energy deposited in DT is inferred by comparing
hard x-ray signals of all-CD and DT-layered targets
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« The key parameter is “radiative power” Ey,q/Eqep, Which represents the radiated
energy by the hot electrons per unit of energy lost via Coulomb collisions
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The radiative power E,q/ Eqep depends on background plasma atomic
number Z and hot-electron temperature
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* Eraa/ Eqgep is proportional to (Z2)/(Z)

* Eaq4/ Eqep depends on the hot-electron temperature that is measured by the multichannel
hard x-ray detector (40 keV and up, assuming a Maxwellian distribution of hot electrons)

0o Eg dE 44
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E gep fy f(Eo) EodE,

IIIIIIIIIII

5y
I\ f




The DT preheat energy is directly proportional to the difference
In hard x-ray signals between the cryo and all-CD implosion
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HXRall CD HXRcryo

EyotpT =
E rad . E rad
E dep cD E dep DT

 Key assumption: the hot-electron source is the same
for both the cryo and the all-CD experiments
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One-dimensional LILAC simulations indicate that mass-equivalent all-CD and cryo targets

have the same coronal plasma conditions, and therefore the same hot-electron source
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TPD: two-plasmon decay
* A. Simon et al., Phys. Fluids 26, 3107 (1983);
D. T. Michel et al., Phys. Rev. Lett. 109, 155007 (2012).




Preheat is modeled using the hot-electron deposition package in LILAC
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« The 1-D code LILAC uses a straight-line model where electrons lose
energy according to a slowing-down formula*

 The radiation emitted by hot electrons is calculated from NIST tables
« The hot-electron source is Maxwellian with the measured temperature

* Electrons are born at the quarter-critical surface and are initialized with
a user-specified divergence angle

* A. A. Solodov and R. Betti, Phys. Plasmas 15, 042707 (2008).




LILAC simulations show that the preheat formula correctly predicts the energy deposited
into the payload regardless of the payload material, divergence angle, and electron
transport model
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The ratio of DT preheat energy to hard x-ray difference is a function
of the hot-electron temperature
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Although the preheat formula predicts electron energy into the total DT,
the pR degradation depends on electron energy into the unablated DT
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« The difference in hard x-ray signal predicts electron energy into the total DT

A fraction of DT mass is ablated during an OMEGA implosion

Unablated DT

Ablated DT pRgapjated DT < PRunablated DT
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Although the preheat formula predicts hot-electron energy into the total DT,
the pR degradation depends on hot-electron energy into the unablated DT
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V. A. Smalyuk et al., Phys. Rev. Lett. 100, 185005 (2008).
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 Hot-electron transport experiments and modeling on OMEGA
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An experimental platform that utilized Cu-doped payloads of varying thicknesses
was developed to measure where the hot electrons deposit their energy
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w/2 images indicate that the TPD activity in the corona
IS identical between the all-CH and CH (Cu) payload implosions
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These data support the assumption that the hot-electron source
between the all-CH and multilayered implosions is the same.
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The energy deposition into the Cu-doped payload increases
proportionately with the payload mass
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A simple model based on uniform deposition per unit mass
was developed to describe the multilayered experiments
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The good agreement between the model and data confirms the hypothesis that
hot-electron deposition is approximately uniform with respect to mass
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The same model applied to DT layered targets of typical a = 4 implosions* leads
to areal-density degradation of about 15% to 20% with respect to the calculated 1-D
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*S. P. Regan et al., Phys. Rev. Lett. 117, 025001 (2016); 117, 059903(E) (2016).
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 Hot-electron transport experiments on the NIF
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As implosions scale from OMEGA to the NIF, the scale length is also expected
to increase, resulting in more expected LPI for the same coronal conditions
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Scale length at quarter-critical L, ~400 um ~150 um
Electron temperature at quarter-critical T ey ~3.2 keV ~2.5 keV
Intensity at quarter-critical 1, ~4 to 8 x 10 W/cm? ~3.5 x 10 W/cm?
NteD ~2tob ~1
NsRrs ~51t0 10 ~1
M0 = 1L /233 Te yev Nsrs = T4l /2377

LPI: laser—plasma interaction
SRS: stimulated Raman scattering




The OMEGA preheat platform is being developed on the NIF

to measure the coupling of hot electrons into the target
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Different buried depths of the Ge-doped layer are examined to
diagnose the hot-electron deposition profile in the imploding shell

* A. A. Solodov et al., NO5.00011, this conference.




Experiments on the NIF indicate that approximately one quarter
of the total hot-electron energy is coupled into the unablated shell*
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* More detailed hydro-scaled experiments are still needed
to quantify the scaling of preheat with laser energy

* A. A. Solodov et al., NO5.00011, this conference.
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Summary/Conclusions

Preheat in cryogenic implosions is directly inferred by comparison
of hard x rays between all-plastic and DT layered implosions
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» Differences in hard x-ray signhals between mass-equivalent all-CH and cryo implosions
can be used to infer hot-electron energy deposition into the payload

 Hot-electron deposition into the payload increases proportionally with the payload mass

« Modeling of these experiments indicated an ~10-20% degradation in areal density as a
result of hot-electron preheat for typical a = 4 designs

A similar experimental campaign is underway on the NIF to assess the viability of direct
drive on the NIF
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On OMEGA, TPD is the dominant hot-electron source,
while NIF experiments show significant amounts of SRS
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Hot-electrons from laser—plasma interactions can preheat the DT fuel,
thereby raising the adiabat and degrading the areal density
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« The TPD instability is thought to be the prevalent source of hot electrons in direct-drive ICF

EPW
Incident laser Wq/2
w \M_) Kinetic processes
0 create hot electrons
EPW
0)0/2

TC15198

« TPD occurs in the corona where the density is near quarter-critical density (0.2n, < n, <0.25n,)

ICF: inertial confinement fusion
EPW: electron plasma wave
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Electron transport is described with a two-parameter ad hoc model to fit the data
where the electron divergence angle and coronal stopping power are varied
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The best fit to the experimental data occurs at a full divergence angle of 40°
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The hot-electron model almost captures the measured hard x-ray signal
In the cryo experiment and predicts that 9+5 out of 44+10 J of preheat

energy is coupled into the unablated DT UR
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