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Summary

• Modern electron-beam–generation techniques provide 
a broad range of available energies and beam qualities

• These beams have the potential for more-accurate 
radiography, monoenergetic and tunable x-ray generation, 
and possibly direct electron diffraction measurements
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• RF accelerators can be purchased from commercial vendors in turn-key packages
 – the large size and costs associated with RF accelerators limit laboratories 
that can reasonably host one

 – applications needing incredibly precise beams benefi t greatly from 
the small energy spread and emittance

 – the broad tunability of RF accelerators allows for a wide variety of beams 
to be generated from a single machine [2]

RF: radio-frequency
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• Laser wakefi eld accelerator (LWFA) technology can often be 
implemented on existing lasers at ICF/HED research facilities

 – the high emittances and energy spreads limit 
the use of LWFA beams

 – applications that need hundreds of MeV or greater benefi t 
from the small size afforded by the large gradients

 – the technology is rapidly maturing, with beam quality 
constantly increasing [3,4]
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Electron Diffraction

• Electron diffraction utilizes the wave nature of electrons to 
investigate crystal structure 

• Diffraction is induced when the Bragg condition is met [5]
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• Modern RF electron accelerators have been used for the 
successful electron diffraction of dynamic targets [1,5]

 – low-emittance, low-energy spread beams are a must 
for electron diffraction

• The mean-free path (MFP) of elastic scatter provides 
strong limits on the targets and useful beam energies

 – typical electron diffraction goes through no more 
than 4 MFP 
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• Refl ecting electron diffraction provides one potential solution
to the target thickness limits [5]

 – co-timing and target alignment will prove to be challenging

• Thick, uniform, self-tamped targets coupled to a spectrometer 
provide another solution

 – co-timing and detector construction will provide challenges 
to this technique
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Inverse-Compton Scattering X-Ray Sources 

• Electron beams can interact with lasers to form monoenergetic 
x-ray beams via inverse Compton scattering [6] 

• The x-ray beam inherits the beam qualities of the parent beams

• If high-intensity lasers are used, a nonlinear scaling with x-ray yield 
and x-ray energy begins to occur following these equations [4]
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X-ray Source using 5-MeV Electron Beam

Laser X-ray (KeV) Bandwidth 
(eV)

X-ray yield per 
pC of electron a0

MTW OPAL 4.24 9.26 6 × 106 3.47
EP 1000 J 1.041 0.22 1 × 109 1.65
EP 350 J 4.502 0.22 4 × 108 4.52
EP OPAL 61.823 1479 1 × 109 43.95
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• An inverse Compton source can be built using the same accelerator 
that would be used for electron diffraction experiments

• This x-ray source would be bright, tunable, and monoenergetic

• The x-ray beam could also be increased in bandwidth 
by adjusting the electron beam parameters

• A 100-pC system coupled to MTW-OPAL would nearly 
be equal in brightness to standard foil x-ray backlighters, 
but would be more tunable

• The same system coupled to OMEGA EP would exceed 
the standard x-ray backlighter brightness by a factor of 100

a0: unitless laser strength parameter
MTW: multi-terawatt
OPAL: optical parametric amplifi er line

Electron Radiography
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• MeV-scale electrons can easily penetrate ICF and HED targets [7] 
and act as a radiography source [8]

• LWFA-generated electron beams can also be made more resistant 
to magnetic fi elds than protons. The resistance of a given charged 
particle to defl ection by a magnetic fi eld is given by [2,8]

B r q
p

# = ,

where B is the magnetic fi eld, r is the defl ection length, 
p is the particle momentum, and q is the particle charge

• D3He proton radiography has a magnetic rigidity of ~0.6 T-m [9]

• A 300-MeV electron beam has twice the magnetic rigidity of D3He 
protons and is well within the range of a typical LWFA source

• The electron beam also has range in materials that is two orders 
of magnitude higher than D3He protons, allowing for denser targets 
or targets shielded by holhraums
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• RF accelerators can be purchased from commercial vendors in turn-key packages
 – the large size and costs associated with RF accelerators limit laboratories 
that can reasonably host one

 – applications needing incredibly precise beams benefit greatly from  
the small energy spread and emittance

 – the broad tunability of RF accelerators allows for a wide variety of beams  
to be generated from a single machine [2]

RF: radio-frequency
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• Laser wakefield accelerator (LWFA) technology can often be 
implemented on existing lasers at ICF/HED research facilities

 – the high emittances and energy spreads limit  
the use of LWFA beams

 – applications that need hundreds of MeV or greater benefit 
from the small size afforded by the large gradients

 – the technology is rapidly maturing, with beam quality 
constantly increasing [3,4]
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Electron Diffraction

• Electron diffraction utilizes the wave nature of electrons to 
investigate crystal structure 

• Diffraction is induced when the Bragg condition is met [5]
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• Modern RF electron accelerators have been used for the 
successful electron diffraction of dynamic targets [1,5]

 – low-emittance, low-energy spread beams are a must  
for electron diffraction

• The mean-free path (MFP) of elastic scatter provides 
strong limits on the targets and useful beam energies

 – typical electron diffraction goes through no more  
than 4 MFP 
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• Reflecting electron diffraction provides one potential solution 
to the target thickness limits [5]

 – co-timing and target alignment will prove to be challenging

• Thick, uniform, self-tamped targets coupled to a spectrometer 
provide another solution

 – co-timing and detector construction will provide challenges 
to this technique
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Inverse-Compton Scattering X-Ray Sources 

• Electron beams can interact with lasers to form monoenergetic 
x-ray beams via inverse Compton scattering [6] 

• The x-ray beam inherits the beam qualities of the parent beams

• If high-intensity lasers are used, a nonlinear scaling with x-ray yield 
and x-ray energy begins to occur following these equations [4]
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• An inverse Compton source can be built using the same accelerator 
that would be used for electron diffraction experiments

• This x-ray source would be bright, tunable, and monoenergetic

• The x-ray beam could also be increased in bandwidth  
by adjusting the electron beam parameters

• A 100-pC system coupled to MTW-OPAL would nearly  
be equal in brightness to standard foil x-ray backlighters,  
but would be more tunable

• The same system coupled to OMEGA EP would exceed  
the standard x-ray backlighter brightness by a factor of 100

a0: unitless laser strength parameter
MTW: multi-terawatt
OPAL: optical parametric amplifier line
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• MeV-scale electrons can easily penetrate ICF and HED targets [7]  
and act as a radiography source [8]

• LWFA-generated electron beams can also be made more resistant  
to magnetic fields than protons. The resistance of a given charged  
particle to deflection by a magnetic field is given by [2,8]

B r q
p

# = ,

where B is the magnetic field, r is the deflection length,  
p is the particle momentum, and q is the particle charge

• D3He proton radiography has a magnetic rigidity of ~0.6 T-m [9]

• A 300-MeV electron beam has twice the magnetic rigidity of D3He  
protons and is well within the range of a typical LWFA source

• The electron beam also has range in materials that is two orders  
of magnitude higher than D3He protons, allowing for denser targets  
or targets shielded by holhraums
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Summary

• Modern electron-beam–generation techniques provide  
a broad range of available energies and beam qualities

• These beams have the potential for more-accurate  
radiography, monoenergetic and tunable x-ray generation,  
and possibly direct electron diffraction measurements
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