The Study of Thermal Transport in Magnetized Laser-Produced Plasmas

Introduction

- Experiments at the Omega Laser Facility are measuring the heat-wave propagation in plasmas where an external magnetic field is scaled up to 100 T
 - this new setup provides a platform for experimental testing of magnetohydrodynamic (MHD) and extended-MHD codes
 - initial studies of inhibited heat transport have been performed
 - collective Thomson scattering was used to spatially resolve
 - the plasma conditions within a 2-mm-diam gas-jet plasma
 - at the highest magnetic field strengths of B pprox 12 T, the magnetic-field pressure is significant compared to the plasma pressure $2\mu_0 nk_BT$ 4.0 0

$$(\beta = \frac{1}{B^2} \sim 10)$$

- this results in a quenching of heat transport perpendicular to the applied field, causing nearly a twofold increase in the local plasma temperature - classical thermal transport models break down when the magnetic field is turned off and the mean free path of the electrons is much larger than the temperature scale length

E28787

Setup

- A 2-mm-diam gas-jet nozzle was positioned 1.3 mm below the midpoint of two magneto-inertial fusion electrical discharge system (MIFEDS) solenoid coils
- A 500-ps, 200 J, 3 ω heater beam was directed along the axis of the coils, creating a 2-mm-long cylinder of nitrogen plasma; the plasma cylinder had a diameter of about 100 μ m
 - laser intensity: 6.68×10^{15} W/cm²
 - peak electric-field strength: 2.24×10^{11} V/m
- A 200-ps, 20-J, 4 ω Thomson-scattering beam was turned on 100 ps after the heater beam; this beam was directed almost perpendicular to the plasma cylinder to probe the plasma conditions along the 100- μ m diameter at target chamber center (TCC)
 - laser intensity: 1.67×10^{15} W/cm²
 - peak electric-field strength: 1.12×10^{11} V/m
- The MIFEDS coils discharged ~10 kA of currents before the lasers fired; this created an on-axis magnetic-field strength close to 12 T prior to plasma formation
- Multiple shots were taken with and without the MIFEDS

Z. BARFIELD, D. H. FROULA, and J. L. PEEBLES University of Rochester, Laboratory for Laser Energetics

SHU/

UR

LLE

Introduction

- Experiments at the Omega Laser Facility are measuring the heat-wave propagation in plasmas where an external magnetic field is scaled up to 100 T
 - this new setup provides a platform for experimental testing of magnetohydrodynamic (MHD) and extended-MHD codes
 - initial studies of inhibited heat transport have been performed
 - collective Thomson scattering was used to spatially resolve the plasma conditions within a 2-mm-diam gas-jet plasma
 - at the highest magnetic field strengths of B $\approx\,$ 12 T, the magnetic-field pressure is significant compared to the plasma pressure

$$(\beta = \frac{2\mu_0 nk_{\rm B}T}{{\rm B}^2} \sim 10)$$

- this results in a quenching of heat transport perpendicular to the applied field, causing nearly a twofold increase in the local plasma temperature
- classical thermal transport models break down when the magnetic field is turned off and the mean free path of the electrons is much larger than the temperature scale length

Setup

- A 2-mm-diam gas-jet nozzle was positioned 1.3 mm below the midpoint of two magneto-inertial fusion electrical discharge system (MIFEDS) solenoid coils
- A 500-ps, 200 J, 3 ω heater beam was directed along the axis of the coils, creating a 2-mm-long cylinder of nitrogen plasma; the plasma cylinder had a diameter of about 100 μ m
 - laser intensity: $6.68\times10^{15}~\text{W/cm}^2$
 - peak electric-field strength: 2.24 \times 10^{11} V/m
- A 200-ps, 20-J, 4 ω Thomson-scattering beam was turned on 100 ps after the heater beam; this beam was directed almost perpendicular to the plasma cylinder to probe the plasma conditions along the 100- μ m diameter at target chamber center (TCC)
 - laser intensity: $1.67\times10^{15}~W/cm^2$
 - peak electric-field strength: 1.12×10^{11} V/m
- The MIFEDS coils discharged ~10 kA of currents before the lasers fired; this created an on-axis magnetic-field strength close to 12 T prior to plasma formation
- Multiple shots were taken with and without the MIFEDS

Heat Flow and Thomson Volume

4ω Thomson-Scattering Images

Results

- Electron-plasma wave features from 4ω Thomson scattering showed a characteristic dip in the density profile across the 100- μ m center of the plasma without an external magnetic field
- Temperature measurements from the ion-acoustic waves show an average temperature of 250 eV without an external B field
- The temperature was amplified to over 400 eV when the MIFEDS provided a 12-T magnetic field, thereby inhibiting heat transport, causing strong local heating
- Estimates of β are between 11 and 25 due to variation in the density and temperature profiles
- β was 16.8 to 22.4 on axis during the analyzed MIFEDS shot

Future work

- Shots planned on the OMEGA laser for 2020 will demonstrate stronger magnetic fields (100 T), leading to much greater magnetic pressures ($\beta \le 1$)
- Proton radiography will be implemented to take accurate measurements of the magnetic field and Nernst velocity

This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0003856, the University of Rochester, and the New York State Energy Research and Development Authority.