Cross-Beam Energy Transfer in Offset Implosions on OMEGA

Target Offset (µm)

K. S. Anderson University of Rochester Laboratory for Laser Energetics 61st Annual Meeting of the American Physical Society Division of Plasma Physics Fort Lauderdale, FL 21 – 25 October 2019

Cross beam energy transfer (CBET)* reduces sensitivity to target mispositioning

- Higher laser intensity leads to higher CBET gains and lower sensitivity to offset
- At higher intensities, target offset does not appear to dominate the experimental yield
- CBET mitigation techniques are predicted to enhance the sensitivity to target offset, while still improving overall performance for offsets less than 40µm

^{*} I. V. Igumenshchev *et al.*, Phys. Plasmas <u>17</u>, 122708 (2010); J. A. Marozas *et al.*, Phys. Rev. Lett. <u>120</u>, 085001 (2018).

J. A. Marozas*, D. Cao, C. J. Forrest, O. M. Mannion, R. C. Shah,

P. B. Radha, F. J. Marshall, T. J. B. Collins, J. P. Knauer, V. N. Goncharov

University of Rochester Laboratory for Laser Energetics

M. Gatu Johnson Massachusetts Institute of Technology Plasma Science and Fusion Center

No clear correlation* exists between yield-over-clean and target offset in OMEGA cryogenic experiments with $2.5 \le \alpha \le 3.5$ and $14 \le CR \le 19$

- Other sources of nonuniformity appear to dominate YOC in cryogenic implosions
- Simulations without CBET show neutron yields have high sensitivity to target offset

Target offset causes an $\ell = 1$ mode in the laser illumination pattern

- Beam centers strike the target closer together on one side than the other
- This results in a dominant
 l = 1 mode in the
 illumination pattern at *t* = 0

As the plasma forms, more over-the-horizon light reaches the "hot" side of the target

CBET is higher on the hot side of the target, effectively reducing the l = 1 drive asymmetry from target offset.

Room-temperature experiments with prescribed target offsets are modeled better when CBET effects are included

- Simulated both with CBET* + nonlocal** heat transport and with a variable fluxlimited (VFL) thermal model
- Simulation including CBET data matched experimental data better
 - yields
 - compressed core offsets
 - In-flight motion of target center

^{*}J. A. Marozas *et al.*, Phys. Rev. Lett. <u>120</u>, 085001 (2018). **D. Cao *et al.*, Phys. Plasmas <u>22</u>, 082308 (2015).

Simulations with CBET and nonlocal thermal transport more accurately predict yield degradation from target offset

- VFL^{*} shows 2× more yield degradation than CBET + nonlocal transport.
- Offset of 40-microns results in a 50% degradation in yield (simulated)

* VFL = variable flux limiter (e.g., no non-local thermal transport, no CBET)

**Experimental yield is normalized to the best-shot, no-offset experiment; simulated yield is normalized to the with-offset simulated yield for the same shot.

UR

Cryogenic experiments with peak laser intensity of 1×10^{15} W/cm² show weaker sensitivity to offset

Cryogenic experiments with peak laser intensity of 1×10^{15} W/cm² show weaker sensitivity to offset

The CBET+nonlocal model predicts significantly less sensitivity to offset than the VFL model

Experimental variations in yield between shots is captured well in simulations when CBET is included

 2-D simulations with only target offset magnitude reproduce observed yield well

UR

 Yield variation may be related to the offset direction, especially relative to the target stalk position* (this effect is not modeled here).

*See M. Gatu Johnson et al., YO5.00007, this meeting.

Varying the peak intensity in the laser pulse shows that the increased CBET in high-intensity pulses lowers sensitivity to target offset

OMEGA cryogenic designs including CBET mitigation have been explored*

^{*}J. A. Marozas *et al.*, Phys. Plasmas <u>25</u>, 056314 (2018).

^{**}I. V. Igumenshchev et al., Phys. Plasmas 23, 052702 (2016).

CBET mitigation increases sensitivity to target offset, while increasing overall energy coupling and neutron yield

CBET mitigation techniques improve yield, even with large (~40 µm) offsets

Cross beam energy transfer (CBET) reduces sensitivity to target mispositioning

- Higher laser intensity leads to higher CBET gains and lower sensitivity to offset
- At higher intensities, target offset does not appear to dominate the experimental yield
- CBET mitigation techniques are predicted to enhance the sensitivity to target offset, while still improving overall performance for offsets less than 40µm

High-intensity (1.2×10¹⁵ W/cm²), low-convergence experiments show almost no sensitivity to target offset when simulated with CBET

Offset of 40-microns results in only a 2% degradation in yield (simulated)

High-intensity (1.2×10¹⁵ W/cm²), low-convergence experiments show almost no sensitivity to target offset when simulated with CBET

 Yield variation may be related to the offset direction, especially relative to the target stalk position* (this effect is not modeled here).

