Cross-Beam Energy Transfer in Offset
Implosions on OMEGA
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Cross beam energy transfer (CBET)* reduces

sensitivity to target mispositioning .
LLE

 Higher laser intensity leads to higher CBET gains and lower sensitivity
to offset

e At higher intensities, target offset does not appear to dominate the
experimental yield

« CBET mitigation techniques are predicted to enhance the sensitivity to
target offset, while still improving overall performance for offsets less

than 40pum
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No clear correlation* exists between yield-over-clean and target offset
iIn OMEGA cryogenic experiments with 25 <a<3.5and 14<CR <19
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Target offset causes an € = 1 mode in the laser illumination pattern
U=

LLE

e Beam centers strike the
target closer together on
one side than the other

Less intense

e This results in a dominant
_ { =1 mode in the
More intense illumination pattern at t = 0
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As the plasma forms, more over-the-horizon
light reaches the “hot” side of the target
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More over-the-horizon
light seeds higher CBET
losses in hot-side beams

This is a geometric effect of target
offset. The £ = 1 drive asymmetry
from power imbalance is not
reduced by CBET;
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CBET is higher on the hot side of the target, effectively
reducing the £ = 1 drive asymmetry from target offset.




Room-temperature experiments with prescribed target offsets
are modeled better when CBET effects are included
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» Simulated both with CBET* + nonlocal**
heat transport and with a variable flux-
limited (VFL) thermal model
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*J. A. Marozas et al., Phys. Rev. Lett. 120, 085001 (2018).
**D. Cao et al., Phys. Plasmas 22, 082308 (2015).




Simulations with CBET and nonlocal thermal transport more
accurately predict yield degradation from target offset
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* VFL = variable flux limiter (e.g., no non-local thermal transport, no CBET)
**Experimental yield is normalized to the best-shot, no-offset experiment;

simulated yield is normalized to the with-offset simulated iield for the same shot.




Cryogenic experiments with peak laser intensity of
1x101> W/cm? show weaker sensitivity to offset
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Cryogenic experiments with peak laser intensity of

1x101> W/cm? show weaker sensitivity to offset
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The CBET+nonlocal model predicts significantly less sensitivity to offset than the VFL model
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Experimental variations in yield between shots is
captured well in simulations when CBET is included
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*See M. Gatu Johnson et al., YO5.00007, this meeting.




Varying the peak intensity in the laser pulse shows that the increased
CBET in high-intensity pulses lowers sensitivity to target offset
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OMEGA cryogenic designs including CBET
mitigation have been explored*
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*J. A. Marozas et al., Phys. Plasmas 25, 056314 (2018).
**|. V. lgumenshchev et al., Phys. Plasmas 23, 052702 (2016).




CBET mitigation increases sensitivity to target offset, while

iIncreasing overall energy coupling and neutron yield
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CBET mitigation techniques improve yield, even with large (~40 um) offsets




Summary/Conclusions

Cross beam energy transfer (CBET) reduces

sensitivity to target mispositioning .
LLE

 Higher laser intensity leads to higher CBET gains and lower sensitivity
to offset

e At higher intensities, target offset does not appear to dominate the
experimental yield

« CBET mitigation techniques are predicted to enhance the sensitivity to
target offset, while still improving overall performance for offsets less

than 40pum
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High-intensity (1.2x10'> W/cm?), low-convergence experiments show
almost no sensitivity to target offset when simulated with CBET
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Offset of 40-microns results in only a 2% degradation in yield (simulated)




High-intensity (1.2x10'> W/cm?), low-convergence experiments show
almost no sensitivity to target offset when simulated with CBET
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*See M. Gatu Johnson et al., YO5.00007, this meeting.
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