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The self-similar nonlinear evolution of the multimode ablative Rayleigh—Taylor instability (ARTI)

Is studied numerically in both two and three dimensions .
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e The nonlinear multimode bubble-front penetration follows the a,gt? scaling
law with o, dependent on the initial conditions and ablation velocity

* Nonlinear ARTI is dominated by bubble competition, indicating that mass
ablation reduces ¢, with respect to the classical value for the same initial
perturbation amplitude

» Ablation-driven vorticity accelerates the bubble velocity and prevents the
transition from the bubble competition to the bubble merger regime at
large initial amplitudes, leading to higher ¢, than in the classical case
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The nonlinear multimode bubble-front penetration
of the classical RTI follows the a;,A:gt* scaling law
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Self-similarity of nonlinear multimode RTI can be achieved in two ways:*

1. Bubble merger: saturation of shorter wavelength modes leading to a universal ¢,

2. Bubble competition: exponential growth and saturation of long wavelength modes,
o, increases logarithmically with initial perturbation
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*G. Dimonte, Phys. Rev. E 69, 056305 (2004);
P. Ramaprabhu, G. Dimonte, and M. J. Andrews, J. Fluid Mech. 536, 285 (2005).
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The ablation effect on the nonlinear multimode evolution is not well understood
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« Bubble merger theory shows mass ablation Ablation effect on single RTI mode:
reduces o;* «a, = (1-bV,)a, « Suppress linear growth rate?
. 7 =+ A kg —bkV,
* ARTI experiments on OMEGA show that ¢, = 0.04
is slightly lower than CRTI experiments** and e Enhances nonlinear bubble velocity*
1 *kkk
spectrum shifts to longer wavelengths Ut;ot _ \/g(l— rd)/Cgk +r, a)(f | 4K2
* Recent experiments on the NIF show that nonlinear « Nonlineraly destabilize small scale RTI*

ARTI can grow faster than Haan’s model***

*D. Oron, U. Alon, and D. Shvarts, Phys. Plasmas 5, 1467 (1998); **O. Sadot et al., Phys. Rev. Lett. 95, 265001 (2005); ***A. Casner et al., Phys. Plasmas 22, 100702 (2015);
tH. Takabe et al., Phys. Fluids 28, 3676 (1985); *R. Betti and J. Sanz, Phys. Rev. Lett. 97, 205002 (2006); R. Yan et al., Phys. Plasmas 23, 022701 (2016); **H. Zhang et al., Phys. Rev. E 97, 011203(R) (2018;);

V. Smalyuek et al. Physical Review Letters 103 150001 (2009)




Both 2-D and 3-D planar simulations are used to investigate the multimode ARTI

UR
LLE

« Simulation setup corresponds to atypical acceleration phase of a direct-drive target
+ 2-Dsimulations: L, =100 gm, 3-D simulation: L, =L, =50 gm, Grid size: 0.1 um, Linear cutoff: k=1 gm-t

Bubble-front penetration: h = IT 2 —T.*

Time-varied acceleration:* S = [j\/adt]2
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*G. Dimonte et al., Phys. Fluids 16, 1668 (2004).
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The nonlinear multimode bubble-front penetration follows the ¢,gt? scaling law
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* Nonlinear ARTI is dominated by bubble competition and ¢, depends on initial perturbation
» Mass ablation reduces ¢, with respect to the classical value for the same initial perturbation amplitude
* o, INn ARTI can be higher than CRTI when initial perturbation is large
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The dependence of «, on initial perturbation and ablation is derived from the bubble
competition model* modified by ablation
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CRTI bubble competition: a :% |n(M]_1 * Eq. (1)
4 k {hg )

ARTI linear growth: y =gk —bkV, =7, (1—b\73) \7a =k/gV,
Linear phase: h, = A, +V,t =h,exp(yt) +V,t
Nonlinear bubble penetration: h, =U, (t—t, )+ ht',\'L U,=Cygi/2

Apply self-similar condition:% =0= o, ~ (1—bVa)C\/; In 2Cyx
0 4 k,hy

-1
—1} =(1- b\7a)ac Eq. (2)

Mass ablation suppresses nonlinear bubble growth by reducing y

*G. Dimonte, Phys. Rev. E 69, 056305 (2004);




Simulations are used to quantify the dependence of , on hyjand V,
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« C;3/C,5~1.6: 3-D bubble velocity is 1.7x larger than 2-D
* b =4.2for both 2-D and 3-D: the same linear-dispersion relation
e Pj(m,n)=initial mode spectrum that decays ~k with modes m through n
with k=mx2r/L
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The mode-structure comparison between classical and ablative RTI
shows larger bubbles dominate the asymptotic behavior
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Nonlinear ARTI is still in the bubble-competition regime
even for large-amplitude small-scale initial perturbations
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» Ablation-generated vorticity can keep the nonlinear ARTI in the bubble-competition regime
* ¢« In ARTI can reach higher values than in CRTI for sufficiently large initial perturbations

———Eq.2,C=0.6,b=4.2
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Summary/Conclusion

The self-similar nonlinear evolution of the multimode ablative Rayleigh—Taylor instability (ARTI)

Is studied numerically in both two and three dimensions .
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* The nonlinear multimode bubble-front penetration follows the a,A;gt? scaling
law with ¢, dependent on the initial conditions and ablation velocity

* Nonlinear ARTI is dominated by bubble competition, indicating that mass
ablation reduces ¢, with respect to the classical value for the same initial
perturbation amplitude

» Ablation-driven vorticity accelerates the bubble velocity and prevents the
transition from the bubble competition to the bubble merger regime at
large initial amplitudes, leading to higher ¢, than in the classical case
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The bubble-competition theory may be used to explain the hydrodynamic stability boundary
observed in laser-fusion implosion experiments
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* The allowed IFAR depends on the initial perturbation
« The Omega experiments indicate that hy ~ 0.01 #m
Stability boundary
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o,V (um/ns) L \ PP " adiabat (e < 3.5) implosions
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—26 3 0.8 scale RTI*
x —34 35
CdE 201 ® OMEGA exp - 0.6 IFAI_?0 = Ro/Aos .
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Assume same initial perturbation for RT (does not account for RM) *V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014).
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