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We are developing a new platform to directly
measure and understand the structure and
transport of warm dense matter.
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Measure density and temperature states by constraining the assumptions
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VISAR measurement determines the breakout time
and pressure versus time profile

2. Calculate structure factors without model assumptions.

Estimate ionization from Thomson-scattering data and constraint those with Aperture substrate

VISAR optical reflectivity measurements.

Experimental Setup

PXRDIP: powder x-ray diffraction image plate
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e Production of a precise and uniform state of warm dense matter by shock compression.
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VISAR: velocity interferometry for any reflector
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2. Spectrally resolved inelastic x-ray scattering
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1. Build a new spectrometer in von Hamos geometry to obtain high throughput and high
resolution for analyzing Thomson-scattering data
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3. Analyze shock-compressed Si and Ge inelastic data, including different crystal
orientations
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1. Measure density and temperature states by constraining the assumptions
with multiple simultaneous diagnostics.

2. Calculate structure factors without model assumptions.

. Estimate ionization from Thomson-scattering data and constraint those with
VISAR optical reflectivity measurements.

VISAR: velocity interferometry for any reflector
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1. Build a new spectrometer in von Hamos geometry to obtain high throughput and high
resolution for analyzing Thomson-scattering data

2. Compare ionization from scattering and reflections

3. Analyze shock-compressed Si and Ge inelastic data, including different crystal
orientations

4. Explore material structure in the collective regime

5. Compare different ionization state and build an understanding of bound-bound and
bound-free electron effects
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