Signatures of Systematic Azimuthal Asymmetry in Nuclear Diagnosis of ICF Implosions on the NIF

H. G. Rinderknecht University of Rochester Laboratory for Laser Energetics 60th Annual Meeting of the American Physical Society Division of Plasma Physics Portland, OR | 5 – 9 November 2018

LLE

Signatures of Systematic Azimuthal Asymmetry in Nuclear Diagnosis of ICF Implosions on the NIF

H. G. Rinderknecht University of Rochester Laboratory for Laser Energetics 60th Annual Meeting of the American Physical Society Division of Plasma Physics Portland, OR | 5 – 9 November 2018

Combining nTOF hotspot velocities and FNAD *pR* maps improves understanding of stagnation asymmetry in NIF experiments

- 1. Hotspot velocity is systematically toward $\phi \sim 90^{\circ}$ on recent DT cryogenic implosions
- 2. Areal-density (*ρR*) asymmetry amplitude and direction are correlated with hotspot velocity
- 3. Mode-1 implosion asymmetry can explain both the velocity and *pR* signatures

nTOF: neutron time-of-flight FNAD: flange neutron activation diagnostics

Many thanks to my collaborators:

D.T. Casey, R. Bionta, R. Hatarik, A. Moore, E. Hartouni, D. Schlossberg, G. Grim, O. Landen, P. Patel

Lawrence Livermore National Laboratory

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Method: Velocity

DT- and DD-neutron spectra are sensitive to hotspot velocity: net velocity produces a Doppler shift in neutron energy

Each detector measures the hotspot velocity projected along its line of sight

^{*}R. Hatarik et al., J. Appl. Phys. **118**, 184502 (2015).

On the NIF, DT- and DD-neutron spectra are used to measure the mean hotspot velocity on up to four nTOF lines of sight

ROCHESTER R. Hatarik et al., Rev. Sci. Instrum. 89, 101138 (2018).

Looking at a group of cryogenic DT implosions, a pattern emerges: hotspot velocity tends toward $\phi \sim 90^{\circ}$ on the equator

HDC: 20 shots

Showing analyzed shots, FY16—18

Result #1: Velocity

Looking at a group of cryogenic DT implosions, a pattern emerges: hotspot velocity tends toward $\phi \sim 90^{\circ}$ on the equator

HDC: 15/20 shots BF: 9/10 shots CH: 4/15 shots

Showing analyzed shots, FY16—18 with V > 40 km/s

Nuclear activation detectors (NADs) diagnose variations in neutron fluence due to scattering in fuel

C. Yeamans and D. Bleuel, Fusion Sci. Technol. 72, 120 (2017).

Method: pR

However, a neutron energy shift from hotspot flow velocity can cause an "offset" (mode 1) in activation patterns

Method: pR

Method: *pR*

Using the mean hotspot velocity, we can correct FNAD data to infer areal-density variation (ρR)

*see H.G. Rinderknecht et al., Rev. Sci. Instrum. 89, 10/125 (2018).

Result #2: pR

In cryogenic implosions, the corrected FNAD mode-1 amplitude ($\propto \rho R$ asymmetry) increases linearly with hotspot velocity

LLE

Result #3: direction

The residual FNAD mode-1 is in the same direction as the hotspot velocity on most shots

HDC: 15/20 shots BF: 9/10 shots CH: 4/15 shots

Showing analyzed shots, FY16—18 with V > 40 km/s

The following picture emerges from the data: low ρR and velocity in one direction can be caused by reduced compression on that side

The following picture emerges from the data: low ρR and velocity in one direction can be caused by reduced compression on that side

The following picture emerges from the data: low ρR and velocity in one direction can be caused by reduced compression on that side

Combining nTOF hotspot velocities and FNAD *pR* maps improves understanding of stagnation asymmetry in NIF experiments

- 1. Hotspot velocity is systematically toward $\phi \sim 90^{\circ}$ on recent DT cryogenic implosions
- 2. Areal-density (*ρR*) asymmetry amplitude and direction are correlated with hotspot velocity
- 3. Mode-1 implosion asymmetry can explain both the velocity and *pR* signatures

Related talks on causes of the observed asymmetry:

- A. Pak, Impact of fill tube perturbation on HDC implosions
- K. McGlinchey, Simulating radiation asymmetries and fill tubes
- R. Nora, 3D Hydra capsule studies on effect of hohlraum windows
- D. Schlossberg, Experiments with laser-driven mode-1 asymmetry
- T. Ma, Experimental investigation of mode-1 asymmetries
- C. Young, 3D radiation asymmetries using dynamic view factor model Monday pm (
- O. Landen, Sensitivity of yield and compression to asymmetry

this session (BO6:2) this session (BO6:3) this session (BO6:4) this session (BO6:7) this session (BO6:11) Monday pm (CO6:2) Tuesday (GO6:5)

18

Appendix – backup slides

The source of the ϕ = 90° asymmetry is currently under investigation

- Drive asymmetries:
 - Hohlraum positioning offset (X)
 - -2ω unconverted light asymmetry
- Target asymmetries:
 - Fill tube (7°): see A. Pak, this session
 - Diagnostic patches: see T. Ma, this session

See also O. Landen, Tuesday (GO6:5):

"Sensitivity of yield and compression to velocity, shock timing, coast time and asymmetry in indirect-drive NIF implosions,"

Azimuthal asymmetry is suggested by many diagnostics: we are now beginning to put together the pieces of this mode-1 puzzle

Flange NADs

C. Yeamans & D. Bleuel, Fusion Sci. Technol. 72, 120 (2017)

DSR [%]

NTOF: R. Hatarak, et al., J. Appl. Phys. 118, 184502 (2015) MRS: J.A. Frenje, et al., Phys. Plasmas 17, 056311 (2010)

NITOF: F. E. Merrill, et al.,

Rev. Sci. Instrum. 83, 10D317 (2012)

X-ray late-time images

LLE

A. Pak, et al., *Phys. Plasmas* 20, 056315 (2013)

Method: Velocity

On the NIF, DT- and DD-neutron spectra are used to measure mean hotspot velocity on up to four NTOFs line of sight

Method: Velocity

On the NIF, DT- and DD-neutron spectra are used to measure mean hotspot velocity on up to four nTOF lines of sight

A single best-fit velocity (x) and uncertainty boundary is found, using:

 $\chi^2 \leq \min(\chi^2) + \chi^2_{\text{limit}}$

LLE

Uncertainties in the measurements allow a range of solutions: an envelope of "acceptable" mean velocity is calculated using a reduced χ^2 method

Method

Regardless of the number of detectors, the χ^2 limit to contain the true velocity 68% of the time is $\chi^2_{\text{limit}} = 3.45$

UR LLE

(At least) three "perpendicular" detectors are needed: without SPEC-E or SPEC-A, sensitivity along one horizontal axis is lost

Velocity uncertainty boundaries ($\chi^2_{\text{limit}} = 3.45$) 40 All 20 Vz (km/sec) detectors used 0 to SPEC-A -20 -40 100 50 50 0 -50 -50 Vx (km/sec) Vy (km/sec) -100

Method

(At least) three "perpendicular" detectors are needed: without SPEC-E or SPEC-A, sensitivity along one horizontal axis is lost

Looking at a group of cryogenic DT implosions, a pattern emerges: hotspot velocity tends towards $\phi \sim 90^{\circ}$ on the equator.

HDC: 18 shots BF: 10 shots

Showing analyzed shots, FY16—18

Result #1: Velocity

Looking at a group of cryogenic DT implosions, a pattern emerges: hotspot velocity tends towards $\phi \sim 90^{\circ}$ on the equator.

HDC:18 shotsBF:10 shotsCH:14 shots

Showing analyzed shots, FY16—18

On "antipodal" shot with imposed drive asymmetry and low ρR_{fuel} ,* velocity correction eliminates the observed FNAD asymmetry

LLE

Test case

To interpret flange NAD data, hotspot velocity must be accounted for: change in activation, fluence, and scattering

#1: Change in activation with the second se	th neutron energy $A = \int \sigma(E) \frac{dF}{dE} dE$ Shift in activation is interpolated from ENDF: $\frac{A}{\langle A \rangle} \approx \frac{\sigma(E)}{\sigma(\langle E \rangle)}$
Effect	Magnitude of Activation Change
1. Δ <i>E</i> → activation	2.81% cos θ / (100 km/s)
2. Kinematic ΔFluence	0.39% cos θ / (100 km/s)
3. $\Delta E \rightarrow$ scattering	0.078% cos θ / (100 km/s) / (1 g/cm ²)
TOTAL:	3.2% cos θ / (100 km/s)

#3: Change scattering with neutron energy

Result #2: pR

In cryogenic implosions, the corrected FNAD mode-1 amplitude ($\propto \rho R$ asymmetry) increases linearly with hotspot velocity

High velocities (> 50 km/sec) and mode-1 amplitudes (> 4%) are observed in all campaigns.

LLE

HDC: 18 shots BF: 10 shots

Showing analyzed shots, FY16—18

A cohesive picture of azimuthal asymmetry emerges from comparing hotspot velocity and ρR mode-1 amplitude

Additional diagnostic comparisons

Downscattered ratio (MRS, nTOF, NIS)

• X-ray late-time images

• Neutron imaging (Volegov, Casey, ...)

Test hypotheses & fix asymmetry

- Hohlraum positioning offset
- Fill tube (5 μ m vs 10 μ m)
- Diagnostic patches (this summer)
- 2ω unconverted light asymmetry
- ...

Model development

Yield vs velocity

 Analytical model for comparing magnitude of burn-averaged <V>, ρR mode-1 (Springer)

LLE

• Impact on performance

• ...

Spherical harmonic (" Y_{lm} ") normalization: amplitude = (max – mean)

On conversion from FNAD variation to absolute ρR_{fuel} :

Say any scattering removes a neutron from activation.

$$Y = \exp\left(-\rho R \,\sigma_{\rm DT}/M_{\rm DT}\right)$$

Then the observed activation is normalized as:

$$\frac{Y}{\langle Y \rangle} = \exp\left[\frac{\langle \rho R \rangle \sigma_{DT}[\langle E \rangle] - \rho R(\theta) \sigma_{DT}[E(\theta)]}{M_{DT}}\right]$$

We care about $\rho R(\theta)$, and σ_{DT} is nearly constant. So we can solve for $\Delta \rho R = \rho R - \langle \rho R \rangle$:

$$\Delta \rho R = -\frac{M_{DT}}{\langle \sigma_{DT} \rangle} \ln \left(\frac{Y}{\langle Y \rangle} \right) \approx -\ln \left(\frac{Y}{\langle Y \rangle} \right) [4.64 \text{ g/cm}^2]$$

We can use the formula $\langle \rho R \rangle$ = 18.8 DSR g/cm² to get the relative variation:

$$\frac{\Delta \rho R}{\langle \rho R \rangle} \approx -\ln \left(\frac{Y}{\langle Y \rangle} \right) \left[\frac{25\%}{DSR} \right] \approx -\frac{\Delta Y}{\langle Y \rangle} \left[\frac{25\%}{DSR} \right]$$

This means a 10% variation in Y implies an 80—90% variation in ρR .

CAVEAT:

Neutron scattering & finite hotspot sizes inhibit direct areal density inference. Due to finite sources, FNADs cannot resolve high modes.

Appendix: simple fill-tube model

Velocity and FNAD data for a series of HDC implosions with 5/10µm fill tubes can test the hypothesis that fill-tube jets are causing these effects

What about fill tubes?

Comparing HDC implosions with 5µm vs 10µm fill tubes: hotspot velocity is ~60 km/sec for both cases, in the direction $\phi = 90^{\circ} \pm 40^{\circ}$

What about fill tubes?

FNAD data tells a similar story: mode-1 asymmetry ~ 3—5%, with systematic variation in the direction of asymmetry

What about fill tubes?

The systematic difference in asymmetry direction suggests a hypothesis:

- 1. All hotspots have average velocity V_{HS}
- 2. 10 μ m fill-tube injects a flow with velocity V_{iet}

The systematic difference in asymmetry direction suggests a hypothesis:

1. All hotspots have average velocity V_{HS}

2. 10 μ m fill-tube injects a flow with velocity V_{iet}

