
A Novel Double-Spike Pulse Shape for OMEGA Cryogenic Implosions

D. Patel **University of Rochester Laboratory for Laser Energetics**

Curves of constant $\chi_{\mathrm{no}\;\alpha}$ at 1.9 MJ of symmetric drive

60th Annual Meeting of the American Physical Society Division of Plasma Physics Portland, OR 5-9 November 2018

Summary

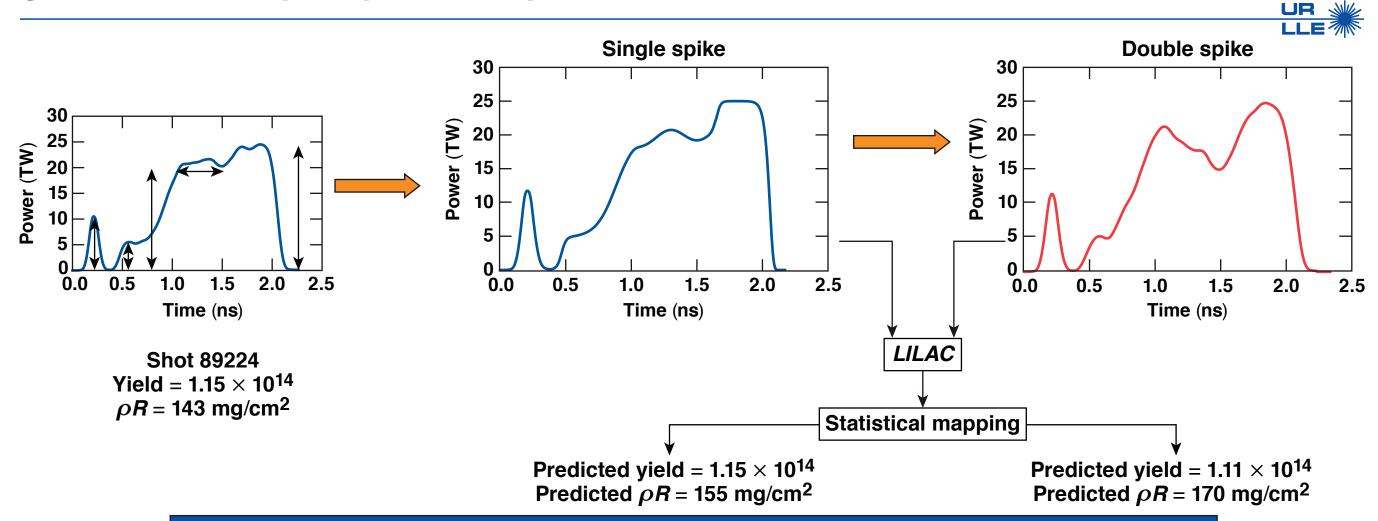
Implosions with a "double-spike" pulse shape achieved the highest performance in OMEGA cryogenic implosions

- The new double-spike pulse led to yield = 1.56 \times 10¹⁴ and ρR = 160 mg/cm², with $\chi_{\text{no}\alpha} = 0.74$, when hydrodynamically scaled to laser energy of 1.9 MJ
- Comparison to other implosions with similar target dimensions, but with a flattop pulse, suggests that these implosions are more robust to instability growth
- Dedicated experiments need to be performed to clarify the role of "double-spike" pulse shapes in improved performance, and whether performance could be replicated with a flattop pulse
- Double-spike pulse shapes open up a path to implosions of targets with a high initial aspect ratio, which is otherwise inaccessible because of the **IFAR** stability cliff

TC14603

IFAR: in-flight aspect ratio

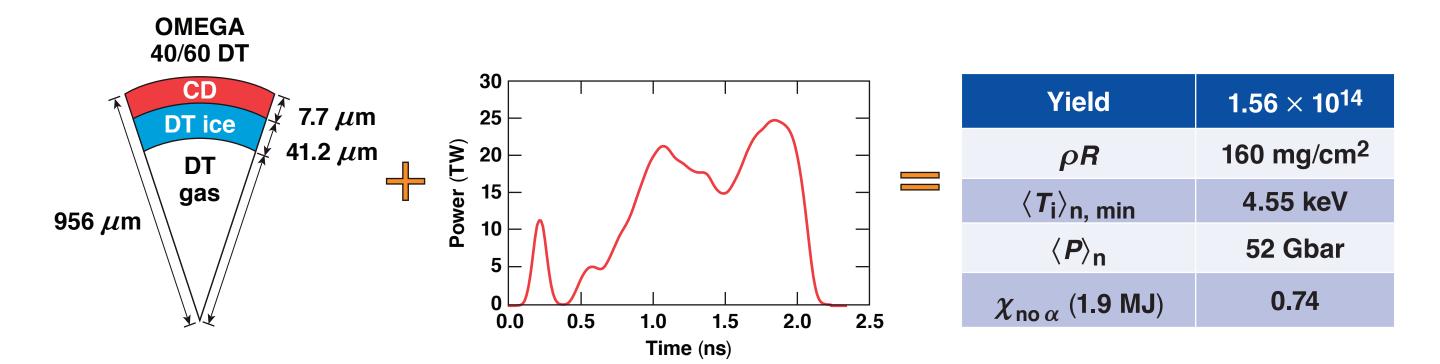
Collaborators



R. Betti, V. Gopalaswamy, J. P. Knauer, K. M. Woo, S. P. Regan, T. C. Sangster, C. Stoeckl, and F. J. Marshall

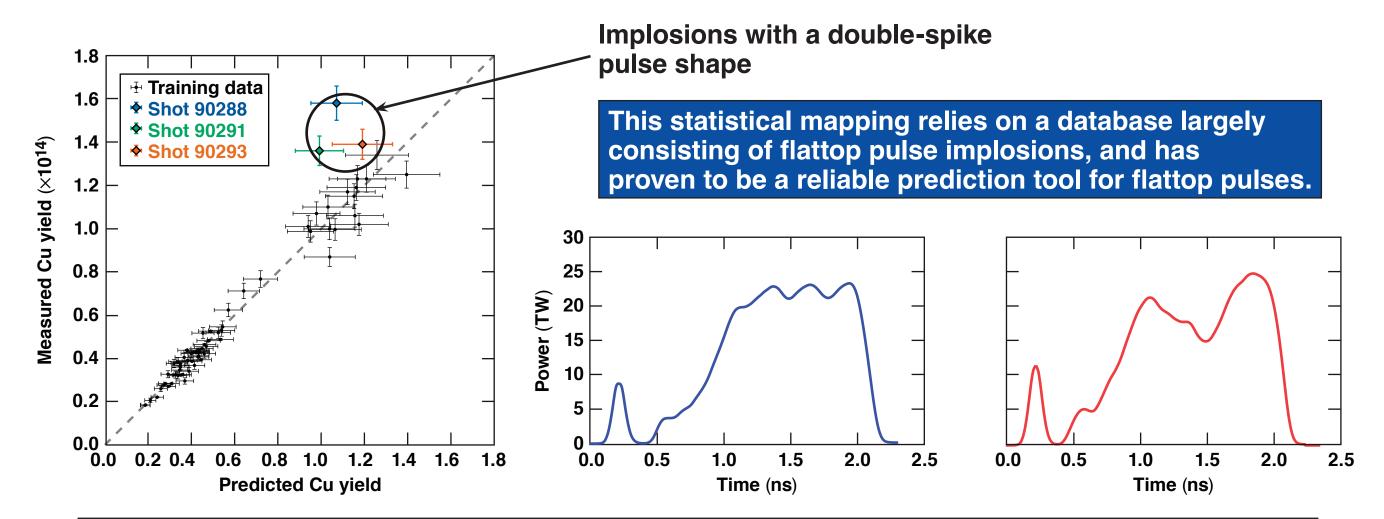
University of Rochester Laboratory for Laser Energetics

A single-spike pulse, optimized using statistical mapping,* was modified to give a double-spike pulse shape


This pulse predicted higher areal densities than the optimized single-spike pulse; therefore, it was chosen for the next OMEGA optimization campaign shot day.

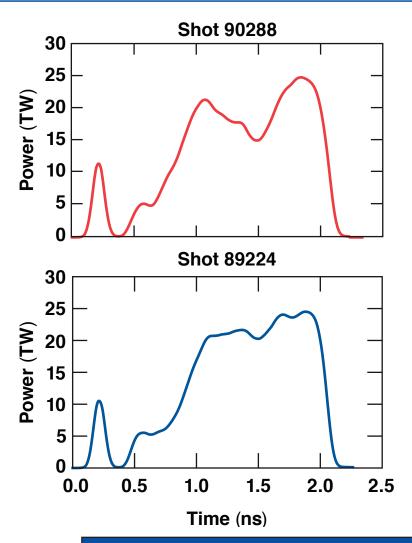
TC14604

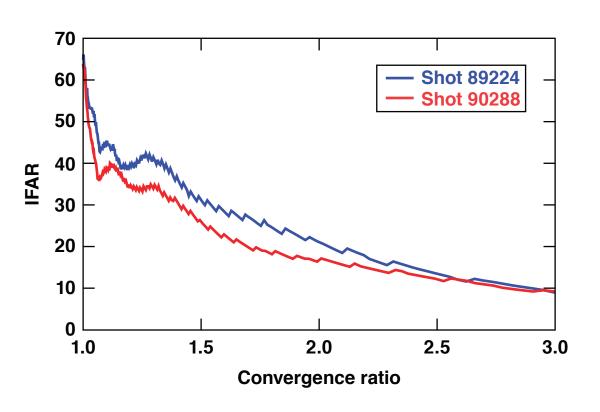
Double-spike implosions achieved the highest performance to date on OMEGA



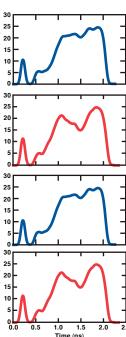
OMEGA cryo shot 90288

The yields for double-spike cryogenic implosions were significantly underpredicted by statistical formulas based on previous experiments




An unexpected outcome of the new pulse shape was significantly higher yields than predictions.

Double-spike implosions have a lower IFAR compared to flattop pulse implosions with a similar target


The reduction in IFAR is caused by a rapid decrease in intensity during the early phase of the main drive, resulting in decompression of the target.

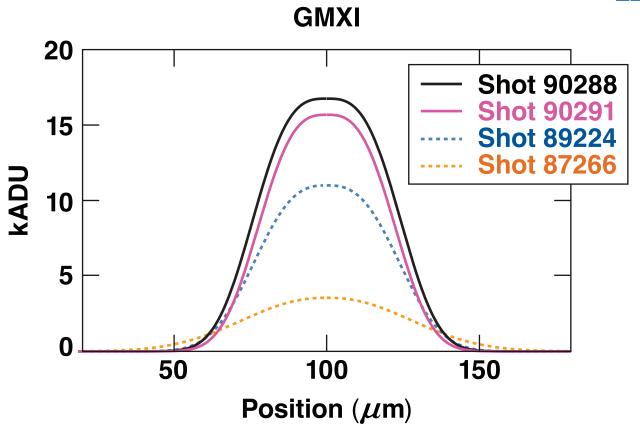
ROCHESTER

Double-spike implosions were more robust because of low IFAR's without sacrificing 1-D (*LILAC*) performance

	Shot	Max V _{imp} (km/s)	IFAR at 2/3	Adiabat at 2/3	<i>LILAC</i> yield	$LILAC ho R \ (g/cm^2)$	<i>LILAC ⟨P</i> ⟩ _n (Gbar)	30 —
μ m	87266	526	44	4.3	5.44 × 10 ¹⁴	132	75	30
980	90291	456	24	4.5	3.98 × 10 ¹⁴	189	90	30 25 - (M_ 20 - 15 - 10 - 0
m	89224	476	34	4.6	4.00 × 10 ¹⁴	164	83	30 — 25 — 4 20 —
096	90288	467	25	5.0	3.87 × 10 ¹⁴	178	91	30

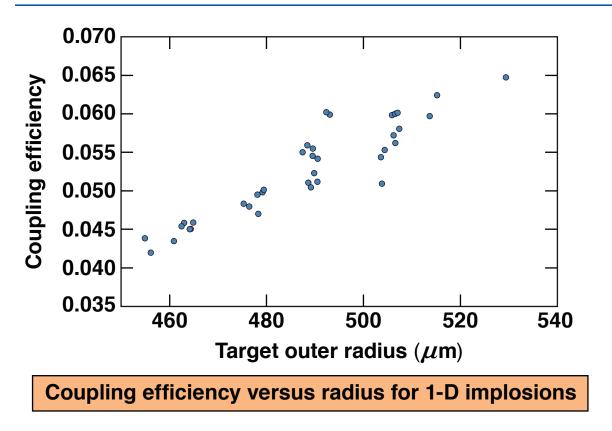
Double-spike implosions have significantly better experimental performance compared to flat-pulse implosions with similar targets

Shot	89224	90288	87266	90291
Yield	1.17 × 10 ¹⁴	1.56×10^{14}	1.34×10^{14}	1.35×10^{14}
ho R (mg/cm ²)	143±23	160±22	100±14	166±25
Pressure (Gbar)	41	52	32	52
R_0 (μ m)	30	28	36	26
$\chi_{no\;\alpha}$ (1.9 MJ)	0.61	0.74	0.58	0.71


Double-spike implosions showed higher ρR 's at higher adiabats and higher yields at lower implosion velocities, suggesting higher robustness to 3-D effects.

Double-spike implosions have higher inferred pressures compared to previous shots from the Optimization Campaign currently underway on OMEGA

Shot	Pressure (Gbar)
89224	41
90288	52
87266	32
90291	52


Higher brightness in time-integrated self-emission x-ray images of hot spots affirm the higher values of inferred pressures.

F. J. Marshall and J. A. Oertel, Rev. Sci. Instrum. <u>68</u>, 735 (1997). GMXI: gated monochromatic x-ray imager

The double-spike pulse shape opens up a path to implosions of targets with a high initial aspect ratio, which is otherwise inaccessible because of the IFAR stability cliff

Coupling efficiency =	Shell KE at start of deceleration phase (<i>LILAC</i>) Laser energy		
$ extbf{ extit{V}}_{ ext{imp}}^2 \propto extbf{ extit{P}}_{ ext{abl}} * extbf{ extit{AR}}_0^*$	lower $\frac{R_{\text{beam}}}{R_{\text{target}}}$ ⇒ Higher absorption		

Shot 88314 (1015- μ m OD, 41- μ m ice thickness)				
	LILAC	Experiment		
Yield	8 × 10 ¹⁴	1.25×10^{14}		
hoR (mg/cm²)	183	125		
IFAR at 2/3	44	N/A		

- The performance of such targets is limited by the growth of small-scale fluctuations from laser imprint penetrating the shell
- If this can be alleviated by lowering the IFAR with a double-spike pulse shape, a large fraction of 1-D performance could be recovered

*R. E. Kidder, Nucl. Fusion 16, 3 (1976).

Summary/Conclusion

Implosions with a "double-spike" pulse shape achieved the highest performance in OMEGA cryogenic implosions

- The new double-spike pulse led to yield = 1.56×10^{14} and ρR = 160 mg/cm², with $\chi_{\text{no} \alpha}$ = 0.74, when hydrodynamically scaled to laser energy of 1.9 MJ
- Comparison to other implosions with similar target dimensions, but with a flattop pulse, suggests that these implosions are more robust to instability growth
- Dedicated experiments need to be performed to clarify the role of "double-spike" pulse shapes in improved performance, and whether performance could be replicated with a flattop pulse
- Double-spike pulse shapes open up a path to implosions of targets with a high initial aspect ratio, which is otherwise inaccessible because of the IFAR stability cliff