Direct-Drive-Ignition Designs with Gradient-Density Double Shells
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MJ neutron yield could be possible for direct-drive double-shell implosions
with gradient-density shells
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- Direct-drive double-shell designs for inertial confinement fusion (ICF) have been
performed with the 2-D hydrocode DRACO using the best physics models currently
available

- Gradient-density inner shells are found to be essential for igniting a double-shell
target in which the outer shell can be driven at a very high adiabat (o« ~ 8 to 10)

- Our DRACO simulations show that such designs could survive both laser-imprint
and classical Rayleigh—Taylor (RT) instability growth, leading to the production of
~MJ neutron yields
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Indirect-drive double-shell designs have been investigated
for noncryogenic targets* in the past

Results of P. Amendt et al. (2002)
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Mixing between the inner shell and DT fuel is always a concern for double-shell targets.

*W. S. Varnum et al., Phys. Rev. Lett. 84, 5153 (2000);
P. Amendt, J. D. Colvin et al., Phys. Plasmas 9, 2221 (2002); P. A. Amendt et al., Phys. Rev. Lett. 94, 065004 (2005);
J. Milovich et al., Phys. Plasmas 11, 1552 (2004);
TC14471 H. F. Robey et al., Phys. Plasmas 12, 072701 (2005); H. F. Robey et al., Phys. Rev. Lett. 103, 145003 (2009).
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Interest in indirect-drive cryogenic double-shell* (or multiple-shell**)
targets has been recently renewed because they may provide an
alternative path to ignition
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Results of D.S. Montgomery et al. (2015)
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W.Montgomery et al., Phys. Plasmas 25, 092706 (2018);

E. C. Merritt et al., Bull. Am. Phys. Soc. 61, BAPS.2016.DPP.PO5.3 (2016).
**K. Molvig et al., Phys. Rev. Lett. 116, 255003 (2016);
P. McKenty et al., Bull. Am. Phys. Soc., C04.00002 (2018).
TE. Loomis, presented at the 22nd Target Fabrication Meeting,
Las Vegas, NV, 12-16 March 2017.
BHR: Besnard—Harlow—Rauenzahn
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Recent progress to make gradient-density shells* at General Atomics could
significantly help to mitigate the classical Rayleigh—Taylor
instability for double-shell target designs
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TC14473 *H. Xu et al., Fusion Sci. Technol. 73, 354 (2018).
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High-adiabat (o = 8 to 10) direct-drive double-shell designs with
a gradient-density inner shell were examined using DRACO with
comprehensive physics models (NL + CBET + FPEOS)
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Direct drive can couple more energy to targets:

NL: nonlocal

Ek (Outer She") ~ 90 kd and Ek (inner She") ~ 40 kd. CBET: cross-beam energy transfer
FPEOS: first-principles equation of state
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DRACO simulations with long-wavelength drive nonuniformities (up to ¢ = 50)
have indicated an impact pressure of P ~ 4 Gbar when the outer shell
stagnates on the inner shell
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Long-wavelength modes have “imprinted”
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The low-mode DRACO simulation has resulted in an igniting double-sheli
target with a neutron yield of ~3.2-MJ energy
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Setting the outer shell on high adiabat (oc = 8 to 10) helps to reduce
laser-imprint effects in high-mode DRACO simulations (up to ¢ = 150)
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Summary/Conclusions

MJ neutron yield could be possible for direct-drive double-shell implosions
with gradient-density shells
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- Direct-drive double-shell designs for inertial confinement fusion (ICF) have been
performed with the 2-D hydro code DRACO using the best physics models currently
available

- Gradient-density inner shells are found to be essential for igniting a double-shell
target in which the outer shell can be driven at a very high adiabat (o« ~ 8 to 10)

- Our DRACO simulations show that such designs could survive both laser-imprint
and classical Rayleigh—Taylor (RT) instability growth, leading to the production of
~MJ neutron yields
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