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Cryogenic direct-drive implosions show that the inferred DD ion temperatures
are lower than the DT ion temperatures as plasma temperature increases

•	 Past theoretical work has shown that residual kinetic energy (RKE) will 
lead to the inferred DD ion temperature being lower than the DT inferred 
ion temperature*

•	 Relying only on RKE to explain the difference between DT and DD on 
OMEGA cryogenic implosions infers thermal temperatures that are 
inconsistent with measured yields on OMEGA

–– a similar trend with inconsistent thermal temperatures resulting 
from RKE has been observed in indirect-drive implosions at the 
National Ignition Facility (NIF)**
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Summary

	 *	T. J. Murphy, Phys. Plasmas 21, 072701 (2014).
**	M. Gatu Johnson et al., Phys. Rev E 94, 021202(R) (2016).

Variations in hot-spot profiles provide a possible important contribution  
to the observed discrepancy in inferred ion temperatures.
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Fluid motion of the fuel assembly at peak compression will impart residual 
kinetic energy in the hot spot

•	 A dominant , = 1 will have different effects  
of the measured neutron energy spectrum

1.	Collective motion establishes a shift  
in the neutron mean energy*

	 E E E En th f0 D= + + 	 (First moment)

2.	Variation in the flow enhances the broadening, 
leading to larger apparent ion temperature**

	 Bryskn KE
2 2 2v v v= + 	 (Second moment)
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Motivation

	 *	L. Ballabio, J. Källne, and G. Gorini, Nucl. Fusion 38, 1723 (1998).
	**	T. J. Murphy, Phys. Plasmas 21, 072701. (2014).

Symmetric Asymmetric
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A forward-fit technique was used to infer the spectral moments of the  
peak distributions from a neutron-time-of-flight (nTOF) diagnostic
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C. J. Forrest et al., Rev. Sci. Instrum. 87, 11D814 (2016).
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The nTOF diagnostics are located in a highly collimated 
line of sight to minimize background effects
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The ratio of the apparent ion temperature can be used to infer the residual 
kinetic energy fraction (fRKE)
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Cryogenic DT implosions
y = x The fRKE* can be defined as internal 

energy that did not contribute to the 
thermal energy of the hot spot

	 *	T. J. Murphy, Phys. Plasmas 21, 072701. (2014).
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The kinetic energy fraction inferred from the ratio of the DT/DD ion
temperature increases with the apparent temperature of the plasma

7

0.0

0.1

0.4

0.5

0.2

0.3

0.7

0.6

43 6

Shot 89996

75
Measured T DT (keV)i

K
in

et
ic

 e
ne

rg
y 

fra
ct

io
n



0

1

2

3

4

5

6

7

0.20.0
Kinetic energy fraction

Ap
pa

re
nt

 D
T 

io
n 

te
m

pe
ra

tu
re

0.4 0.6

Inferred Ti
0.1 keV

0.8 1.0

Thermal temperature
Contribution caused by fluid motion

v2
v

kT

E28095

The residual kinetic energy inferred from cryogenic implosions  
underpredicts the thermal temperature of the fusing plasma
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The apparent ion temperature of the 
fusing plasma can be expressed 
by the thermal temperature and 
variance caused by flow variations
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An underprediction in the thermal temperature has also been 
observed from experimental data at the National Ignition Facility.

	M. Gatu Johnson et al., Phys. Rev E 94, 021202(R) (2016).

v
2v 	=	 is the contribution caused by  	

		  the fluid motion for both the  
		  DT and DD reactants
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A 1-D model with a temperature profile from hydrodynamic simulations*  
can be used to calculate the DT and DD neutron-averaged ion temperature
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*	S.P. Regan et al., Phys. Rev. Lett. 117, 025001 (2016).

•	 The DT and DD reactivities have different sensitivities 
with respect to the temperature profile of the hot spot
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The DT and DD neutron-averaged ion temperatures  
are highly sensitive to the profile of temperature
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•	 Mixing of the cold-fuel layer with the hot-spot is one possibility 
that will modified the shape of the temperature profile
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An estimate of the DT yield from the inferred thermal temperature  
of the hot spot is not consistent with the experimental yield
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•	 The experimental yield does not show a decrease  
with an increase in the inferred kinetic energy fraction
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Summary/Conclusions

Cryogenic direct-drive implosions show that the inferred DD ion temperatures
are lower than the DT ion temperatures as plasma temperature increases

•	 Past theoretical work has shown that residual kinetic energy (RKE) will 
lead to the inferred DD ion temperature being lower than the DT inferred 
ion temperature*

•	 Relying only on RKE to explain the difference between DT and DD on 
OMEGA cryogenic implosions infers thermal temperatures that are 
inconsistent with measured yields on OMEGA

–– a similar trend with inconsistent thermal temperatures resulting 
from RKE has been observed in indirect-drive implosions at the 
National Ignition Facility (NIF)**

	*	T. J. Murphy, Phys. Plasmas 21, 072701 (2014).
**	M. Gatu Johnson et al., Phys. Rev E 94, 021202(R) (2016).

Variations in hot-spot profiles provide a possible important contribution  
to the observed discrepancy in inferred ion temperatures.
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The DT and DD neutron-averaged ion temperature ratio is affected from
different profiles of fuel fractions over the radius of the hot spot
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