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A new ignition criterion identifies the transition from alpha heating to burn 
propagation and is valid in multi-dimensions 

• In the alpha heating regime, 1D simulations show that the yield enhancement due to alpha heating varies as a 

unique function of the parameter 𝒇𝒇𝜶𝜶 until the transition to burn propagation  

• Ignition is this transition point which occurs at 𝒇𝒇𝜶𝜶 ≈ 𝟏𝟏.𝟒𝟒 and yield amplifications of 15-25x.  

• This definition of ignition is valid in multi-dimensions when the fraction of absorbed alpha particles is 

correctly accounted for in the definition of 𝒇𝒇𝜶𝜶 

• For implosions typical of the indirect drive campaign on the NIF*, the fusion yield required for ignition varies 

between 0.5-1.5 MJ depending on areal density and DT mass 

2 

Summary 

*National Ignition Facility 
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In ICF implosions, alpha heating levels can be characterized by comparing the 

alpha energy deposited into the hot spot to the hot spot energy* 

4 

𝒇𝒇𝜶𝜶 =
𝟏𝟏
𝟐𝟐𝜽𝜽𝜶𝜶𝑬𝑬𝜶𝜶
𝑬𝑬𝒉𝒉𝒉𝒉

 

𝜺𝜺𝜶𝜶 = 𝟑𝟑.𝟓𝟓 𝑴𝑴𝑴𝑴𝑴𝑴 = alpha birth energy 

𝑬𝑬𝒉𝒉𝒉𝒉 = 𝟑𝟑
𝟐𝟐
𝑷𝑷𝑴𝑴𝑯𝑯𝑯𝑯 = Hot spot internal energy 

𝑬𝑬𝜶𝜶 = 𝜺𝜺𝜶𝜶 𝒀𝒀𝒀𝒀𝑴𝑴𝒀𝒀𝒀𝒀 = total alpha energy 

𝜽𝜽𝜶𝜶 = absorbed alpha fraction (≈ 𝟎𝟎.𝟗𝟗 in 1D and doesn’t vary much) 

𝑴𝑴𝑯𝑯𝑯𝑯 = hot spot volume (17% neutron contour) 
*A. Christopherson et al, Phys. Plasmas 25, 072704 (2018). 
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Ignition in ICF plasmas can be identified as the transition from hot-spot alpha 
heating to burn propagation in the shell o𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐚𝐚𝐚𝐚 𝒇𝒇𝜶𝜶 ≈ 𝟏𝟏.𝟒𝟒 
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1D LILAC simulation database 
𝜶𝜶~𝟏𝟏 − 6 

𝑴𝑴𝒀𝒀~𝟐𝟐𝟎𝟎𝟎𝟎 − 𝟔𝟔𝟎𝟎𝟎𝟎
𝒌𝒌𝒌𝒌
𝒉𝒉

 
𝑬𝑬𝑳𝑳~𝟑𝟑𝟎𝟎𝒌𝒌𝟑𝟑 − 𝟏𝟏𝟎𝟎𝑴𝑴𝟑𝟑  
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2D perturbed DRACO simulations do not follow the 1D yield amplification curve 
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The leading hypothesis for the discrepancy observed in perturbed implosions is 

that the alphas from the neutron producing region are deposited into the bubbles 
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The alpha deposition into a distorted mass can be determined exactly by 

calculating the Lagrangian trajectories of points along the hot spot boundary. 

8 

 

Hot spot boundary at bang time 
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2D perturbed yield amplification curves follow the same 1D behavior when the 

fraction of absorbed alpha particles is taken into account in the definition of 𝒇𝒇𝜶𝜶 
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We conclude that yield amplification=20 is a valid definition of ignition even in the 
presence of asymmetries 

𝛉𝛉𝛂𝛂 ≡
𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐚𝐚 𝐞𝐞𝐜𝐜𝐞𝐞𝐜𝐜𝐜𝐜𝐞𝐞 𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐜𝐜𝐚𝐚𝐞𝐞𝐝𝐝 𝐜𝐜𝐜𝐜 𝐀𝐀𝐚𝐚𝐚𝐚 𝐚𝐚𝐀𝐀𝐚𝐚𝐚𝐚

𝐓𝐓𝐚𝐚𝐚𝐚𝐚𝐚𝐀𝐀 𝐚𝐚𝐀𝐀𝐀𝐀𝐀𝐀𝐚𝐚 𝐞𝐞𝐜𝐜𝐞𝐞𝐜𝐜𝐜𝐜𝐞𝐞 𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐜𝐜𝐚𝐚𝐞𝐞𝐝𝐝 𝐜𝐜𝐜𝐜 𝐝𝐝𝐚𝐚𝐝𝐝𝐚𝐚𝐜𝐜𝐜𝐜
 



  

The required fusion yield required for ignition is derived for a yield amplification of 

20 
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𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 ≈ 𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑖𝑖𝑛𝑛 𝛼𝛼 = 20𝑌𝑌𝑖𝑖𝑛𝑛 𝛼𝛼  

𝜒𝜒𝑖𝑖𝑛𝑛𝛼𝛼~ 𝜌𝜌𝑅𝑅 0.61  𝑌𝑌𝑛𝑛𝑛𝑛 𝛼𝛼
𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

0.34
~1 at ignition 

𝑌𝑌𝑖𝑖𝑛𝑛 𝛼𝛼 ~𝜒𝜒𝑖𝑖𝑛𝑛𝛼𝛼3 𝑀𝑀𝑠𝑠𝑠𝑠𝑎𝑎𝑖𝑖

𝜌𝜌𝑅𝑅1.8  



  

A new ignition criterion identifies the transition from alpha heating to burn 
propagation and is valid in multi-dimensions 

• In the alpha heating regime, 1D simulations show that the yield enhancement due to alpha heating varies as a 

unique function of the parameter 𝒇𝒇𝜶𝜶 until the transition to burn propagation  

• Ignition is this transition point which occurs at 𝒇𝒇𝜶𝜶 ≈ 𝟏𝟏.𝟒𝟒 and yield amplifications of 15-25x.  

• This definition of ignition is valid in multi-dimensions when the fraction of absorbed alpha particles is 

correctly accounted for in the definition of 𝒇𝒇𝜶𝜶 

• For implosions typical of the indirect drive campaign on the NIF, the fusion yield required for ignition varies 

between 0.5-1.5 MJ depending on areal density and DT mass 
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Summary 



  

Extra slides 
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The fraction of absorbed alphas in the hot spot is less than what would be 

determined from the well used Krokhin and Rozanov formula* 
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*O. N. Krokhin and V. B. Rozanov, Sov. J. Quantum Electron. 2, 393 (1973). 

** G.S.  Fraley,  E.J.  Linnebur,  R.J.  Mason,  and  R.L. Morse, Physics of Fluids 17, 474 (1974). 

Alpha range** 𝜌𝜌𝜌𝜌 = 0.25 𝑇𝑇5/4

1+0.0082 𝑇𝑇5/4 

𝜃𝜃𝛼𝛼,𝐾𝐾𝐾𝐾 ≈ 1 −
1
4
𝜌𝜌𝜌𝜌
𝜌𝜌𝑅𝑅ℎ𝑠𝑠

 



  

The fraction of alpha particles deposited into the hot spot can be calculated exactly 

from simulations by tracking the lagrangian hot spot mass 
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𝐸𝐸𝛼𝛼,𝑎𝑎𝑎𝑎𝑠𝑠𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,ℎ𝑠𝑠 = � �𝑤𝑤𝛼𝛼,𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑠𝑠𝑖𝑖𝑠𝑠𝑎𝑎𝑎𝑎  𝑑𝑑𝑉𝑉ℎ𝑠𝑠 𝑑𝑑𝑑𝑑

𝑠𝑠𝑏𝑏𝑠𝑠𝑛𝑛𝑠𝑠

0

 

𝑤𝑤𝛼𝛼,𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑠𝑠𝑖𝑖𝑠𝑠𝑎𝑎𝑎𝑎 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑒𝑒𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑑𝑑 𝑎𝑎𝑒𝑒𝑒𝑒 𝑢𝑢𝑒𝑒𝑑𝑑𝑑𝑑 𝑣𝑣𝑑𝑑𝑎𝑎𝑢𝑢𝑣𝑣𝑒𝑒 𝑎𝑎𝑒𝑒𝑑𝑑 𝑑𝑑𝑑𝑑𝑣𝑣𝑒𝑒 

𝜃𝜃𝛼𝛼 ≡
𝐸𝐸𝛼𝛼,𝑎𝑎𝑎𝑎𝑠𝑠𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,ℎ𝑠𝑠
𝐸𝐸𝛼𝛼,𝑎𝑎𝑎𝑎𝑠𝑠𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑠𝑠𝑛𝑛𝑠𝑠

 

𝐸𝐸𝛼𝛼,𝑎𝑎𝑎𝑎𝑠𝑠𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑠𝑠𝑛𝑛𝑠𝑠 = � �𝑤𝑤𝛼𝛼,𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑠𝑠𝑖𝑖𝑠𝑠𝑎𝑎𝑎𝑎  𝑑𝑑𝑉𝑉 𝑑𝑑𝑑𝑑

𝑠𝑠𝑏𝑏𝑠𝑠𝑛𝑛𝑠𝑠

0

 



  

The ignition curve is not affect by differences in alpha transport when the alpha range is 
multiplied by two in the simulations. 
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The fraction of alpha particles absorbed in the hot spot 𝜽𝜽𝜶𝜶 doesn’t vary significantly 

among 1D implosions 
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𝜽𝜽𝜶𝜶 ≡
𝑨𝑨𝒀𝒀𝑨𝑨𝒉𝒉𝑨𝑨𝒉𝒉 𝑨𝑨𝒂𝒂𝒉𝒉𝒂𝒂𝒓𝒓𝒂𝒂𝑴𝑴𝒀𝒀 𝒀𝒀𝒏𝒏 𝒉𝒉𝒂𝒂𝒅𝒅 𝒉𝒉𝑨𝑨𝒂𝒂𝒅𝒅 𝒂𝒂𝑴𝑴𝒇𝒇𝒂𝒂𝒓𝒓𝑴𝑴 𝒂𝒂𝑨𝑨𝒏𝒏𝒈𝒈 𝒅𝒅𝒀𝒀𝒌𝒌𝑴𝑴
𝑨𝑨𝒀𝒀𝑨𝑨𝒉𝒉𝑨𝑨𝒉𝒉 𝑨𝑨𝒂𝒂𝒉𝒉𝒂𝒂𝒓𝒓𝒂𝒂𝑴𝑴𝒀𝒀 𝑴𝑴𝝈𝝈𝑴𝑴𝒓𝒓𝒆𝒆𝒆𝒆𝒉𝒉𝑴𝑴𝒓𝒓𝑴𝑴 𝒂𝒂𝑴𝑴𝒇𝒇𝒂𝒂𝒓𝒓𝑴𝑴 𝒂𝒂𝑨𝑨𝒏𝒏𝒈𝒈 𝒅𝒅𝒀𝒀𝒌𝒌𝑴𝑴

 

𝒇𝒇𝜶𝜶 =
𝟏𝟏
𝟐𝟐
𝑬𝑬𝜶𝜶
𝑬𝑬𝒉𝒉𝒉𝒉

 

𝜽𝜽𝜶𝜶 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 

0.2 

0.4 

0.6 

0.8 

1.0 



  

Ignition has traditionally been defined as 𝝌𝝌𝒏𝒏𝒂𝒂 𝜶𝜶 = 𝟏𝟏 which predicts when the 

implosion has reached one-half of its maximum gain 
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The ignition cliff predicted by 𝝌𝝌𝒏𝒏𝒂𝒂 𝜶𝜶 = 𝟏𝟏 cannot be measured and it does not distinguish between the 
physics of hot spot alpha heating and burn propagation into the dense shell. 

𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎
𝑀𝑀𝑎𝑎𝑀𝑀[𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎]
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