Thermonuclear Ignition

and the Onset of Propagating Burn in Inertial Fusion
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A new ignition criterion identifies the transition from alpha heating to burn
propagation and is valid in multi-dimensions
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* In the alpha heating regime, 1D simulations show that the yield enhancement due to alpha heating varies as a

unique function of the parameter f, until the transition to burn propagation
* Ignition is this transition point which occurs at f, = 1.4 and yield amplifications of 15-25x.

* This definition of ignition is valid in multi-dimensions when the fraction of absorbed alpha particles is

correctly accounted for in the definition of f,

» For implosions typical of the indirect drive campaign on the NIF*, the fusion yield required for ignition varies

between 0.5-1.5 MJ depending on areal density and DT mass

*National Ignition Facility
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In ICF implosions, alpha heating levels can be characterized by comparing the
alpha energy deposited into the hot spot to the hot spot energy*
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npny(ov) Mass density
I , , I
0,E, \l, Hot spot \l,

Eps = %PVHS = Hot spot internal energy
E, = g, Yield = total alpha energy

g, = 3.5 MeV = alpha birth energy radius
0, = absorbed alpha fraction (= 0.9 in 1D and doesn’t vary much)

vus = hot spot volume (17% neutron contour)
*A. Christopherson et al, Phys. Plasmas 25, 072704 (2018).
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Ignition in ICF plasmas can be identified as the transition from hot-spot alpha
heating to burn propagation in the shell occurringatf, ~ 1.4
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2D perturbed DRACO simulations do not follow the 1D yield amplification curve
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The leading hypothesis for the discrepancy observed in perturbed implosions is

that the alphas from the neutron producing region are deposited into the bubblegn
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The alpha deposition into a distorted mass can be determined exactly by

calculating the Lagrangian trajectories of points along the hot spot boundary.
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Hot spot boundary before alpha production

Hot spot boundary at bang time (defined by solving dr/dt = u for all hot spot
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2D perturbed yield amplification curves follow the same 1D behavior when the

fraction of absorbed alpha particles is taken into account in the definition of f,
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We conclude that yield amplification=20 is a valid definition of ignition even in the

presence of asymmetries
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The required fusion yield required for ignition is derived for a yield amplification of

20
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A new ignition criterion identifies the transition from alpha heating to burn
propagation and is valid in multi-dimensions
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* In the alpha heating regime, 1D simulations show that the yield enhancement due to alpha heating varies as a

unique function of the parameter f, until the transition to burn propagation
* Ignition is this transition point which occurs at f, = 1.4 and yield amplifications of 15-25x.

* This definition of ignition is valid in multi-dimensions when the fraction of absorbed alpha particles is

correctly accounted for in the definition of f,

* For implosions typical of the indirect drive campaign on the NIF, the fusion yield required for ignition varies

between 0.5-1.5 MJ depending on areal density and DT mass
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The fraction of absorbed alphas in the hot spot is less than what would be

determined from the well used Krokhin and Rozanov formula* i
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*O. N. Krokhin and V. B. Rozanov, Sov. J. Quantum Electron. 2, 393 (1973).
** G.S. Fraley, E.J. Linnebur, R.J. Mason, and R.L. Morse, Physics of Fluids 17, 474 (1974).
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The fraction of alpha particles deposited into the hot spot can be calculated exactly

from simulations by tracking the lagrangian hot spot mass i
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Wy deposited = alpha energy deposited per unit volume and time

tbang

Ea,absorbed,tot = Wa,deposited dv dt

tbang

Ea,absorbed,hs = f jWa,deposited ths dt
0

E a,absorbed,hs

O

E a,absorbed,tot
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The ignition curve is not affect by differences in alpha transport when the alpha range is
multiplied by two in the simulations.
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The fraction of alpha particles absorbed in the hot spot 8, doesn’t vary significantly

among 1D implosions
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Ignition has traditionally been defined as y,,,, = 1 which predicts when the

implosion has reached one-half of its maximum gain i
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The ignition cliff predicted by x,,, = 1 cannot be measured and it does not distinguish between the
physics of hot spot alpha heating and burn propagation into the dense shell.
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