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A new ignition criterion identifies the transition from alpha heating to burn 
propagation and is valid in multi-dimensions 

• In the alpha heating regime, 1D simulations show that the yield enhancement due to alpha heating varies as a 

unique function of the parameter 𝒇𝒇𝜶𝜶 until the transition to burn propagation  

• Ignition is this transition point which occurs at 𝒇𝒇𝜶𝜶 ≈ 𝟏𝟏.𝟒𝟒 and yield amplifications of 15-25x.  

• This definition of ignition is valid in multi-dimensions when the fraction of absorbed alpha particles is 

correctly accounted for in the definition of 𝒇𝒇𝜶𝜶 

• For implosions typical of the indirect drive campaign on the NIF*, the fusion yield required for ignition varies 

between 0.5-1.5 MJ depending on areal density and DT mass 
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*National Ignition Facility 
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In ICF implosions, alpha heating levels can be characterized by comparing the 

alpha energy deposited into the hot spot to the hot spot energy* 
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𝒇𝒇𝜶𝜶 =
𝟏𝟏
𝟐𝟐𝜽𝜽𝜶𝜶𝑬𝑬𝜶𝜶
𝑬𝑬𝒉𝒉𝒉𝒉

 

𝜺𝜺𝜶𝜶 = 𝟑𝟑.𝟓𝟓 𝑴𝑴𝑴𝑴𝑴𝑴 = alpha birth energy 

𝑬𝑬𝒉𝒉𝒉𝒉 = 𝟑𝟑
𝟐𝟐
𝑷𝑷𝑽𝑽𝑯𝑯𝑯𝑯 = Hot spot internal energy 

𝑬𝑬𝜶𝜶 = 𝜺𝜺𝜶𝜶 𝒀𝒀𝒀𝒀𝒀𝒀𝒀𝒀𝒀𝒀 = total alpha energy 

𝜽𝜽𝜶𝜶 = absorbed alpha fraction (≈ 𝟎𝟎.𝟗𝟗 in 1D and doesn’t vary much) 

𝑽𝑽𝑯𝑯𝑯𝑯 = hot spot volume (17% neutron contour) 
*A. Christopherson et al, Phys. Plasmas 25, 072704 (2018). 
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Ignition in ICF plasmas can be identified as the transition from hot-spot alpha 
heating to burn propagation in the shell o𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐚𝐚𝐚𝐚 𝒇𝒇𝜶𝜶 ≈ 𝟏𝟏.𝟒𝟒 
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1D LILAC simulation database 
𝜶𝜶~𝟏𝟏 − 6 
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2D perturbed DRACO simulations do not follow the 1D yield amplification curve 
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The leading hypothesis for the discrepancy observed in perturbed implosions is 

that the alphas from the neutron producing region are deposited into the bubbles 
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The alpha deposition into a distorted mass can be determined exactly by 

calculating the Lagrangian trajectories of points along the hot spot boundary. 
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2D perturbed yield amplification curves follow the same 1D behavior when the 

fraction of absorbed alpha particles is taken into account in the definition of 𝒇𝒇𝜶𝜶 
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We conclude that yield amplification=20 is a valid definition of ignition even in the 
presence of asymmetries 

𝛉𝛉𝛂𝛂 ≡
𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚 𝐢𝐢𝐢𝐢 𝐡𝐡𝐡𝐡𝐡𝐡 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬

𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓 𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚 𝐢𝐢𝐢𝐢 𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝
 



  

The required fusion yield required for ignition is derived for a yield amplification of 

20 
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𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 ≈ 𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝑛𝑛𝑛𝑛 𝛼𝛼 = 20𝑌𝑌𝑛𝑛𝑛𝑛 𝛼𝛼  

𝜒𝜒𝑛𝑛𝑛𝑛𝑛𝑛~ 𝜌𝜌𝑅𝑅 0.61  𝑌𝑌𝑛𝑛𝑛𝑛 𝛼𝛼
𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

0.34
~1 at ignition 

𝑌𝑌𝑛𝑛𝑛𝑛 𝛼𝛼 ~𝜒𝜒𝑛𝑛𝑛𝑛𝑛𝑛3 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝜌𝜌𝑅𝑅1.8  



  

A new ignition criterion identifies the transition from alpha heating to burn 
propagation and is valid in multi-dimensions 

• In the alpha heating regime, 1D simulations show that the yield enhancement due to alpha heating varies as a 

unique function of the parameter 𝒇𝒇𝜶𝜶 until the transition to burn propagation  

• Ignition is this transition point which occurs at 𝒇𝒇𝜶𝜶 ≈ 𝟏𝟏.𝟒𝟒 and yield amplifications of 15-25x.  

• This definition of ignition is valid in multi-dimensions when the fraction of absorbed alpha particles is 

correctly accounted for in the definition of 𝒇𝒇𝜶𝜶 

• For implosions typical of the indirect drive campaign on the NIF, the fusion yield required for ignition varies 

between 0.5-1.5 MJ depending on areal density and DT mass 
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Summary 



  

Extra slides 
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The fraction of absorbed alphas in the hot spot is less than what would be 

determined from the well used Krokhin and Rozanov formula* 
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*O. N. Krokhin and V. B. Rozanov, Sov. J. Quantum Electron. 2, 393 (1973). 

** G.S.  Fraley,  E.J.  Linnebur,  R.J.  Mason,  and  R.L. Morse, Physics of Fluids 17, 474 (1974). 

Alpha range** 𝜌𝜌𝜌𝜌 = 0.25 𝑇𝑇5/4

1+0.0082 𝑇𝑇5/4 

𝜃𝜃𝛼𝛼,𝐾𝐾𝐾𝐾 ≈ 1 −
1
4
𝜌𝜌𝜌𝜌
𝜌𝜌𝑅𝑅ℎ𝑠𝑠

 



  

The fraction of alpha particles deposited into the hot spot can be calculated exactly 

from simulations by tracking the lagrangian hot spot mass 

14 

𝐸𝐸𝛼𝛼,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,ℎ𝑠𝑠 = � �𝑤𝑤𝛼𝛼,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  𝑑𝑑𝑉𝑉ℎ𝑠𝑠 𝑑𝑑𝑑𝑑

𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

0

 

𝑤𝑤𝛼𝛼,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

𝜃𝜃𝛼𝛼 ≡
𝐸𝐸𝛼𝛼,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,ℎ𝑠𝑠
𝐸𝐸𝛼𝛼,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑡𝑡𝑡𝑡𝑡𝑡

 

𝐸𝐸𝛼𝛼,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑡𝑡𝑡𝑡𝑡𝑡 = � �𝑤𝑤𝛼𝛼,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

0

 



  

The ignition curve is not affect by differences in alpha transport when the alpha range is 
multiplied by two in the simulations. 
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The fraction of alpha particles absorbed in the hot spot 𝜽𝜽𝜶𝜶 doesn’t vary significantly 

among 1D implosions 
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𝜽𝜽𝜶𝜶 ≡
𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 𝒊𝒊𝒊𝒊 𝒉𝒉𝒉𝒉𝒉𝒉 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

 

𝒇𝒇𝜶𝜶 =
𝟏𝟏
𝟐𝟐
𝑬𝑬𝜶𝜶
𝑬𝑬𝒉𝒉𝒉𝒉
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Ignition has traditionally been defined as 𝝌𝝌𝒏𝒏𝒏𝒏 𝜶𝜶 = 𝟏𝟏 which predicts when the 

implosion has reached one-half of its maximum gain 
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The ignition cliff predicted by 𝝌𝝌𝒏𝒏𝒏𝒏 𝜶𝜶 = 𝟏𝟏 cannot be measured and it does not distinguish between the 
physics of hot spot alpha heating and burn propagation into the dense shell. 

𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎
𝑀𝑀𝑀𝑀𝑀𝑀[𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎]
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