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E26655

Equivalent-target-plane and in-target chamber x-ray measurements produce
UV focal-spot fluence distributions that agree within 5%

• A histogram analysis method of the beam-fluence distribution from two shots with slightly 
different laser energy provides the relation between UV and x-ray fluence

• The fluence response between x rays and UV photons FF UV+ c
x_ i has been measured 

for 100-ps pulses with c between 0.9 and 2.6 for photons in the 2-keV range

• The relative errors of the x-ray method for the spot radius of 95% encircled energy,  
the radius of 1/e peak fluence, and the super-Gaussian order are estimated to be less than 5%
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Summary

The UV focal-spot fluence measurements at full power must be improved
to meet the requirements of the 100-Gbar Project.
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Current cryogenic target implosions on OMEGA achieve hot-spot pressures 
exceeding 50 Gbar*
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Hypothesis: Low-mode laser-drive nonuniformity limits the hot-spot pressure.
 * S. P. Regan et al. Phys. Rev. Lett. 117, 025001 (2016); 117, 059903(E) (2016).
** I. V. Igumenshchev et al., Phys. Plasmas 23, 052702 (2016).
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The required UV intensity balance on target must be better than 1%
to meet the 100-Gbar goal

• An accurate knowledge of the UV fluence distribution and the beam energy 
on target at full power for each of the 60 beams is required

• X-ray data are used to infer the beam UV profile at full energy on target, 
but this technique is limited in accuracy and dynamic range

• The potential benefit of the x-ray method is that ultimately all 60 beams might 
be characterized in a single shot
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To TIM†-based 
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 * DPP: distributed phase plate
** TCC: target chamber center
 † TIM: ten-inch manipulator
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The fluence response between x rays and UV photons UV
cF F+xa k

is more favorable in the soft x-ray range

• Current pinhole cameras equipped with charge-injection devices (CID’s) record the x-ray emission 
in the ~3- to 7-keV photon-energy range from Au-coated targets and measured c = 3.42!0.13*

• Using a back-thinned charge-coupled–device (CCD) camera with softer filtration (E < 2 keV) will 
provide a lower c and, therefore, a larger dynamic range in the inferred UV fluence
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* F. J. Marshall et al., Phys. Plasmas 11, 251 (2004).

Calculation for a Au target irradiated with a 100-ps pulse
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UV beam profiles inferred from x-ray measurements at full laser energy
are compared to pre-tank UV measurements
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* ETP: equivalent target plane
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A histogram analysis method* of two shots with slightly different laser 
energies provides the relation between UV and x-ray fluence
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Shot 84485
EL = 36.61 J

Shot 84486
EL = 31.68 J

* LLE Review Quarterly Report 28, 186 (1986).
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A thin Be heat shield was used to protect the pinhole from target debris

• The calibration requires that the same pinhole is used for multiple shots

• Each pinhole was well characterized to calculate its throughput
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The UV fluence distribution of Beam 56 was inferred from the x-ray data
and compared to the UV ETP data
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UV profile from in-target 
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The azimuthally averaged data show a very similar distribution
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Quantity Direct UV ETP X ray inferred

Spot radius of 95% encircled energy—r95 (nm) 405!4 402!13

Spot radius of 74% encircled energy—r74 (nm) 310!3 313!10

Radius of the 1/e peak fluence—r1/e (nm) 354!2 363!12
Super-Gaussian order nSG 5.2!0.1 5.0!0.1
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The statistical errors were estimated based on shot-to-shot variations 
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Quantity Direct
UV ETP

Standard 
deviation 
over six 
shots

X ray 
inferred

Standard 
deviation 
over six 
shots

Spot radius of 95% encircled 
energy—r95 (nm) 

409!4 !1% 399!4 !1 %

Radius of the 1/e peak
fluence—r1/e (nm) 

355!0.5 !0.1% 363!3 !1%

Super-Gaussian order nSG 5.16!0.13 !2.5% 5.1!0.1 !2%

The relative errors of r95, r1/e, and nSG from the x-ray inferred method are estimated to be less than 5%.
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Equivalent-target-plane and in-target chamber x-ray measurements produce
UV focal-spot fluence distributions that agree within 5%

• A histogram analysis method of the beam-fluence distribution from two shots with slightly 
different laser energy provides the relation between UV and x-ray fluence

• The fluence response between x rays and UV photons FF UV+ c
x_ i has been measured 

for 100-ps pulses with c between 0.9 and 2.6 for photons in the 2-keV range

• The relative errors of the x-ray method for the spot radius of 95% encircled energy,  
the radius of 1/e peak fluence, and the super-Gaussian order are estimated to be less than 5%
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The UV focal-spot fluence measurements at full power must be improved
to meet the requirements of the 100-Gbar Project.

Summary/Conclusions 
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Recent self-emission x-ray images from titanium tracer layers in imploded 
targets show significant low-mode asymmetry*
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 * R. C. Shah et al., Phys. Rev. Lett. 118, 135001 (2017).
** I. V. Igumenshchev et al., Phys. Plasmas 23, 052702 (2016).

Experiment 3-D ASTER
simulation**


