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Laser: 10 J, <1 ps
Intensity: >1018 W/cm2
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Bulk plasma conditions were inferred from picosecond time-resolved 
measurements of the Hea thermal line from a buried Al tracer layer

•	 High-intensity, short-pulse laser interactions have been used 
to produce dense, high-temperature plasmas

•	 Picosecond streaked x-ray spectroscopy measured Hea thermal line 
emission from a CH foil containing a buried Al tracer layer 

•	 The plasma conditions were inferred from the thermal linewidth and 
satellite intensity ratio using a nonlocal thermodynamic equilibrium 
(NLTE) collisional-radiative atomic physics model*
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Summary

Experimental uncertainties in the inferred plasma conditions
are quantified in a self-consistent model-dependent framework.

*J. J. MacFarlane et al., High Energy Density Phys. 3, 181 (2007).
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High-energy-density radiative and material properties studies require 
homogeneous, well-characterized plasmas

•	 The plasma conditions in dense, high-temperature plasmas are typically 
inferred with ultrafast thermal x-ray spectroscopy

•	 Previous work has demonstrated how the plasma conditions can be 
inferred by |2 fitting or from line ratios and widths;* rigorous evaluation of 
experimental and statistical uncertainties is uncommon

•	 Statistical uncertainties must be evaluated and quantified in a self-consistent, 
model-dependent framework

4

*	H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University Press, Cambridge, England, 1997).
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Experiments using buried-layer targets access the dense,
high-temperature plasma regime

•	 The target is plastic and contains a buried 
Al spectroscopic tracer layer*,**

•	 The buried layer heats through collisional 
dissipation of a resistive return current

•	 Buried-layer emission is studied with an 
ultrafast streaked x-ray spectrometer
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	 *	C. R. D. Brown et al., Phys. Rev. Lett. 106, 185003 (2011).
**		D. J. Hoarty et al., High Energy Density Phys. 9, 661 (2013).

The data are compared to simulated spectra to infer the plasma conditions.

Laser: 10 J, 1 ps
Intensity: >1018 W/cm2

Buried layer: 0.2 nm

Electrons
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A focusing, time-resolved Hall spectrometer measured Hea emission
from a buried Al layer

•	 Conically curved focusing potassium acid 
phthalate (KAP) crystal

•	 Spectral range !90 eV around Al Hea

•	 Spectral resolution E/ΔE ~ 1000

•	 Temporal resolution ~2 ps
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*	T. A. Hall, J. Phys. E: Sci. Instrum. 17, 110 (1984).
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The measured spectra are averaged over the streak-camera temporal
impulse response
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Statistical uncertainties are quantified from detector photometrics and gain

•	 Uncertainty* in the Hea satellite intensity ratio 
is calculated from statistical uncertainties in the 
measured signal and background

•	 Uncertainty in the Hea FWHM** is based on the 
likelihood that statistical signal fluctuations could 
be spuriously detected as FWHM crossing points
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	*	P. R. Bevington and D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 3rd ed. (McGraw-Hill, Boston, 2003).
**	FWHM: full width at half maximum.
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The instantaneous temperature and density were inferred by comparison
to a NLTE collisional-radiative atomic physics model*
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*J. J. MacFarlane et al., High Energy Density Phys. 3, 181 (2007).

The calculation considers satellite production from Al IX to XIV ions with
Doppler, Stark, natural, Auger, and opacity broadening contributions.
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Preliminary analysis shows the time-dependent plasma conditions for
Al layers driven by a 10-J, 0.7-ps laser pulse
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K-shell atomic model dependence introduces an additional
uncertainty of ~5% in Te and ~30% in ne.* 

*	T. Nagayama et al., High Energy Density Phys. 20, 17 (2016).
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The bulk plasma conditions were inferred using picosecond time-resolved 
measurements of the Al Hea thermal line from a buried tracer layer

•	 High-intensity, short-pulse laser interactions have been used 
to produce dense, high-temperature plasmas

•	 Picosecond x-ray spectroscopy was used to measure the thermal line 
emission from a buried aluminum tracer layer 

•	 The plasma conditions were inferred from the thermal linewidth and 
satellite intensity ratio using a NLTE collisional-radiative atomic 
physics model*
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Summary/Conclusions 

Experimental uncertainties in the inferred plasma conditions
are quantified in a self-consistent model-dependent framework.

*J. J. MacFarlane et al., High Energy Density Phys. 3, 181 (2007).


