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Unlike absolute stimulated Raman scattering (SRS) at quarter-critical density, 
absolute SRS sidescatter is strongly affected by geometry and temperature

•	 SRS sidescatter is expected to become the dominant form  
of the instability for NIF*-scale direct-drive experiments

•	 Since for sidescatter the scattered-light wave vector is comparable 
in length to k0, its orientation relative to the pump wave vectors 
significantly affects the coupling of the instability

•	 The absolute thresholds depend on plasma and beam geometry  
in a complicated way

•	 While general trends can be discerned from one- and two-beam 
examples, quantitative multibeam thresholds require specific 
calculations; the formalism presented here is readily extended  
to such calculations
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Summary

*	NIF: National Ignition Facility
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Liu, Rosenbluth, and White pointed out in 1974 that SRS sidescatter  
can be absolute in the density-gradient direction*

•	 The scattered-light wave propagates perpendicular to the density 
gradient in the interaction region, minimizing convection and 
allowing absolute growth

•	 The instability remains convective in the transverse direction,  
but if the growth is fast enough, and the transverse scale length  
long enough, the instability will saturate through nonlinear effects 
rather than convection

•	 Their condition for this is c
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•	 This condition is readily satisfied in modern laser–plasma 
interaction experiments

•	 Recent experiments and simulations indicate that SRS sidescatter 
may be the predominant form of SRS in direct-drive experiments**
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		*	C. S. Liu, M. N. Rosenbluth, and R. B. White, Phys. Fluids 17, 1211 (1974).
	**	M. J. Rosenberg et al. (invited); P. A. Michel et al.; W. Seka et al., presented at  

the 47th Annual Anomalous Absorption Conference, Florence, OR, 11–16 June 2017.
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In a linear gradient, the coupled equations for SRS sidescatter become  
a set of first-order ordinary differential equations (ODE’s)

•	 For a gradient in the x direction, it is found that the interaction  
occurs over a very small range of density

•	 The equations in k space become (for two beams)
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Numerical integration of these equations gives spatial gain;  
divergent gain indicates absolute threshold
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The coupling coefficients depend on the geometry  
and polarization of the pump and scattered waves
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Temperature affects in-plane SRS for oblique incidence
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•	kd increases with angle between pump and ks, increasing SRS gain

•	 Phase mismatch between kd1 and kd2 increases with angle  
and temperature, so SRS becomes single beam

•	 Landau damping increases with temperature and kd, suppressing 
the long-kd branch and also making SRS single beam
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Increasing temperature inhibits two-beam in-plane SRS
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•	 Phase mismatch caused by Bohm–Gross frequency increases with temperature 
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For small damping, the “back” branch of sidescatter has the lowest threshold
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•	 The mode with the lowest threshold varies with incidence angle 
and polarization, but the “s–s” mode is usually competitive
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Landau damping suppresses the “back” branch of “s–s” sidescatter
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•	 The effect is more pronounced for shorter-wavelength scattering
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For out-of-plane scattering, Landau damping results in a short-wavelength 
cutoff and a minimum in the threshold

•	 When Landau damping is strong, single-beam  
“forward” in-plane scattering becomes dominant
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Collisional damping has little effect for these parameters
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•	 For lower temperatures and longer-wavelength scattering, collisional damping 
becomes somewhat more significant, but does not qualitatively alter the results
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Unlike absolute stimulated Raman scattering (SRS) at quarter-critical density, 
absolute SRS sidescatter is strongly affected by geometry and temperature
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*	NIF: National Ignition Facility

Summary/Conclusions 

•	 SRS sidescatter is expected to become the dominant form  
of the instability for NIF*-scale direct-drive experiments

•	 Since for sidescatter the scattered-light wave vector is comparable 
in length to k0, its orientation relative to the pump wave vectors 
significantly affects the coupling of the instability

•	 The absolute thresholds depend on plasma and beam geometry  
in a complicated way

•	 While general trends can be discerned from one- and two-beam 
examples, quantitative multibeam thresholds require specific 
calculations; the formalism presented here is readily extended  
to such calculations


