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Motivation and results

E26512

• The Gigabar Platform at the National Ignition Facility 
created states of 1.2 keV, 100 g/cm3, and 10 s

• Self-similar solutions to hydrodynamic systems offer 
intuition and simplicity that cannot be achieved with 
hydrodynamic codes

• Understanding experiments in the context of self-similar 
solutions allows insight into the state variables and 
transport properties of the system

• The Guderley self-similar hydrodynamic solution 
accurately recreates experimental results and offers 
insight into the energy partitioning between ions 
and electrons in spherical implosions

• Electron–ion energy partitioning plays an important role 
in what is observed during these types of experiments 
and is not well understood

G. Guderley, Luftfahrtforschung 19, 302 (1942);
P. Reinicke and J. Meyer-ter-Vehn, Phys. Fluids A 3, 1807 (1991).
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Using the Guderley solution to understand experimental results

• Guderley has free parameters set 
by experiment 

 – initial density

 – outer radius

 – shock trajectory 

• Shock trajectory is set to fi t to 
the experimental trajectory in 
the radiograph 

• The time of shock collapse is determined 
from the location of peak emission in 
the radiograph 

• There is qual energy partitioning 
between ions and electrons

• The Guderley model does a good job of predicting 
experimental observables 

• The question of how to partition ion and electron 
energies is still present

• Development of a heat-conduction treatment 
is ongoing

Value Guderley Experiment

Neutron yield 1.74 × 1010 7 × 109

GIon temperatureH 1.2 keV 0.94 keV

X-ray yield 4.3 mJ/sr 
(>8 keV)

9.3 mJ/sr
(fi ltered)
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Creating a model that makes experimental sense

• Diverging temperature at the center means a large thermal gradient 

• Larger thermal gradients give rise to heat waves 

• Thermal conduction is dominated by electrons 

• Hydrodynamic transport is carried out by ions 

• How they equilibrate becomes very important 

• Within the region of observable emission, the Guderley 
and hydrodynamic codes have the same behavior

• The Guderley and Reinicke solutions are used as 
a benchmark for hydrodynmic codes*
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J. R. Rygg, Ph.D. thesis, Massachusetts Institute of Technology, 2006.
* https://github.com/lanl/ExactPack (2 October 2017).
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