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DRACO simulations indicate that an OMEGA cryogenic implosion at an 
intermediate adiabat ~4 is only marginally affected by laser imprint 

•	 Areal density degrades in OMEGA cryogenic implosions with increasing 
in-flight aspect ratio (IFAR); it is hypothesized that this is a result of 
laser imprint and subsequent Rayleigh–Taylor (RT) growth 

•	 DRACO simulations include full 3-D ray trace with cross-beam energy 
transfer (CBET) and nonlocal transport  

•	 Ongoing work is systematically studying designs with varying in-flight 
stability through changes in imprint (smoothing on/off) and RT growth 
(varying adiabat and IFAR)
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26- to 29-kJ OMEGA cryogenic design
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	 *	V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014).  
**	C. D. Zhou and R. Betti et al., Phys. Plasmas 14, 072703 (2007).
	 †	S. P. Regan et al., Phys. Rev. Lett. 117, 025001 (2016); 117, 059903(E) (2016).

•	 Vimp and IFAR are controlled 
by varying the ablator (7.5 to 
12 nm) and fuel thickness 
(40 to 66 nm)

Areal density is compromised with increasing IFAR relative to spherically 
symmetric simulations in OMEGA cryogenic experiments*

IFARNe +

Shot 77066 
Phs = 56!7 Gbar†
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Imprint has been shown to compromise areal density 
in room-temperature implosions on OMEGA*

•	 IFAR is changed by changing picket energies
–– other measures of shell stability (shell thickness) have been 
studied previously in room-temperature implosions**

–– the role of laser imprint on OMEGA cryogenic implosions  
is being studied with DRACO
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	*	P. B. Radha et al., Phys. Plasmas 18, 012705 (2011).
**	S. X. Hu et al., Phys. Plasmas 23, 102701 (2016).

Calculated IFAR

DRACO simulation of room-temperature
triple-picket implosion
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Imprint does not influence the overall compression of an a = 3.7 implosion

•	 DRACO simulation a = 3.7 OMEGA cryogenic implosion (shot 77066) at ~peak neutron production 
(modes , # 150; CBET* and Schurtz–Nicolaï–Busquet nonlocal transport,** FPEOS,† FPOT‡)
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	*	J. A. Marozas and T. J. B. Collins, UO5.00003, presented at the 54th Annual Meeting of 
   the Division of Plasma Physics, Providence, RI, 29 October–2 November 2102.
**D. Cao, G. Moses, and J. Delettrez, Phys. Plasmas 22, 082308 (2015).
	 †		FPEOS: first-principles equation of state; S. X. Hu et al., Phys. Rev. E 92, 043104 (2015). 

 ‡	FPOT: first-principles opacity table; S. X. Hu et al., Phys. Rev. E 90, 033111 (2014). 
††IRIS2D; P. B. Radha et al., KO2 8, presented at the 41st Annual Meeting 
   of the Division of Plasma Physics, Seattle, WA, 15–19 November 1999.
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Observables are only marginally influenced by imprint for this design

•	 The modal approximation of imprint used in DRACO will be compared 
with the speckle model‡

•	 Simulations spanning the parameter space of IFAR and adiabat will 
continue to identify trends and the effect of imprint on observables
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Imprint/“1-D” (%) Experiment/“1-D” (%)

Yield 80 38!2

GtRHn** 97 90!8

Ti 94 90!7

Rhs (nm)† 100 96!2

Phs (Gbar) 96 62!8

	*	I. V. Igumenshchev et al., Phys. Plasmas 24, 056307 (2017).
**IRIS2D; P. B. Radha et al., KO2 8, presented at the 41st Annual Meeting 
   of the Division of Plasma Physics, Seattle, WA, 15–19 November 1999.
	 †	Spect3D; J. J. MacFarlane et al., High Energy Density Phys. 3, 181 (2007). 
	 ‡	A. Shvydky, JO7.00001, this conference.
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DRACO simulations indicate that an OMEGA cryogenic implosion at an 
intermediate adiabat ~4 is only marginally affected by laser imprint 

•	 Areal density degrades in OMEGA cryogenic implosions with increasing 
in-flight aspect ratio (IFAR); it is hypothesized that this is a result of 
laser imprint and subsequent Rayleigh–Taylor (RT) growth 

•	 DRACO simulations include full 3-D ray trace with cross-beam energy 
transfer (CBET) and nonlocal transport  

•	 Ongoing work is systematically studying designs with varying in-flight 
stability through changes in imprint (smoothing on/off) and RT growth 
(varying adiabat and IFAR)
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Summary/Conclusions


