## **Enhancing Neutron Yield in Cylindrical Implosions** with an Applied Magnetic Field





J. L. Peebles



### 59th Annual Meeting of the **American Physical Society Division of Plasma Physics** Milwaukee, WI 23-27 October 2017

### Summary

## **Applying a 10-T axial magnetic field enhances yield by >40%** in laser-driven cylindrical implosions

- A 10-T magnetic field was generated via the magneto-inertial fusion electrical discharge system (MIFEDS) and was verified via proton radiography, Faraday rotation, and Rogowski coil current traces
- An ~75% increase in neutron yield was obtained with  $D_2$  fill pressures of 11 atm and ~40% at 7 atm
- Yields with and without a magnetic field follow trends from 1-D LILAC





### **Collaborators**

J. R. Davies, D. H. Barnak, R. Betti, V. Yu. Glebov, and J. P. Knauer

**University of Rochester** Laboratory for Laser Energetics

K. J. Peterson and D. B. Sinars

**Sandia National Laboratories** 

This project is funded by the Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E) and the U.S. Department of Energy, under Award Number DE-AR0000568, the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.







**MIFEDS** coils deliver a 10-T field at the region of interest while avoiding 40 implosion beams.





**MIFEDS** coils deliver a 10-T field at the region of interest while avoiding 40 implosion beams.





**MIFEDS** coils deliver a 10-T field at the region of interest while avoiding 40 implosion beams.

E26816b ROCHESTER





**MIFEDS** coils deliver a 10-T field at the region of interest while avoiding 40 implosion beams.

E26816c



# Forty OMEGA beams are tuned and spaced to evenly drive a cylindrical implosion using a 1.5-ns square pulse



E26814 ROCHESTER



### 180-J preheat beam .......................

### **MIFEDS** delivers microsecond-duration magnetic fields at the target, confirmed by Faraday rotation



ROCHESTER





# **MIFEDS coils used in an experiment**





TC13948



### A 10-T uncompressed field was verified on shot using proton radiography



Vacuum fields near the coils are extremely strong and completely deflect protons







### A 10-T uncompressed field was verified on shot using proton radiography

at center

**-9**T

 $-10 \, \mathrm{T}$ 

11 T

Fields at the coil were extrapolated from central vacuum fields



A 10-T center vacuum field best reproduces the radiographs









### Initial 10-T field enhancement is greater at higher target pressures

- Imposing an external magnetic field without preheat on the implosion increased yield in different pressure cases
- Yield increased by ~75% in the 11-atm case compared to ~40% in the 7-atm case when the 10-T field was introduced









### **One-dimensional LILAC predicts increased yields up to 15 T without preheat**

• Implosions without preheat have maximized yields at 15 T because of a high convergence ratio, resulting in high magnetic pressure







\*J. R. Davies et al. Phys. Plasmas 24, 062701 (2017).

### **One-dimensional LILAC predicts increased yields up to 15 T without preheat**

• Implosions without preheat have maximized yields at 15 T because of a high convergence ratio, resulting in high magnetic pressure







\*J. R. Davies et al. Phys. Plasmas 24, 062701 (2017).

# New coil designs and use of dual MIFEDS allows for exploration of implosions with initial fields of up to 20 T

- Dual MIFEDS splits the inductive load, allowing for more winds with larger radius, leading to higher fields
- Turning preheat on/off should give very different ion temperatures and yields at 20 T









### Summary/Conclusions

### **Applying a 10-T axial magnetic field enhances yield by >40%** in laser-driven cylindrical implosions

- A 10-T magnetic field was generated via the magneto-inertial fusion electrical discharge system (MIFEDS) and was verified via proton radiography, Faraday rotation, and Rogowski coil current traces
- An ~75% increase in neutron yield was obtained with  $D_2$  fill pressures of 11 atm and ~40% at 7 atm
- Yields with and without a magnetic field follow trends from 1-D LILAC



