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Improved drive symmetry has been demonstrated on OMEGA
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Summary

This method was applied to low-adiabat shots and made it possible  
to reduce the low-mode nonuniformities from 3.5 nm to 1 nm.

•	 In a series of direct-drive implosions, multiple self-emission x-ray images 
were used to tomographically measure their 3-D modes 1, 2, and 3 at a 
convergence ratio of ~3

•	 The target modes were shown to vary linearly with the laser modes from 
approximately constant static modes

•	 This demonstrated that the target modes can be mitigated by adjusting 
the laser beam-energy balance to compensate the static modes
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Self-emission shadowgraphy* from multiple lines of sight was used  
to tomographically measure the 3-D modes , = 1, , = 2, and , = 3 of 
targets imploded on OMEGA
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Each camera measures the projected ablation-front  
surface along the line of sight of the diagnostic. ( , ) ( , ) **R r Y4
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		*D. T. Michel et al., Rev. Sci. Instrum. 83, 10E530 (2012); D. T. Michel et al., High Power Laser Sci. Eng. 3, e19 (2015).
**	Y,

m  are the tesseral spherical harmonics, E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (Cambridge 
University Press, 1927), p. 392; R (i, z) is normalized in percent ( %r 1000

0 = ).

Synchronized observation GRH = 150 nm
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On each camera, the angular variation of the projected ablation contour  
R(i) was determined for an averaged radius of 150 nm
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The 3-D shape of the target was obtained by orienting the  
four contours perpendicular to the camera axis.
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*d[DR(i)] = !0.7 nm, resulting in d[DR(i)]150 = !0.4 nm at the 90th percentile of the student’s t distribution.
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The target motion was obtained by comparing the positions of the 
contours centers with the corresponding contour centers measured on a 
nonimploding solid CH ball shot
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90th percentile of the student’s t distribution

The target motion at 150 nm was obtained using linear fits.*
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The 3-D target displacement is located at the intersection of the  
four lines defined by the camera axis, translated by the measured  
projected target motions
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For each mode ,, a linear evolution of the target modes (Dr,
m  ) with the laser 

beam-energy balance (De,
m  ) was measured
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The reduction of C, with , was explained by the individual beam shape that modifies  
the laser illumination nonuniformity compared to the laser beam-energy balance.
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The linear variations show that the target modes are the result of two 
components: a part that varies linearly with the laser modes and a static part

The static modes are given by

The optimized beam energy 
balance is given by
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This demonstrates that the target modes can be mitigated 
by adjusting the laser modes to compensate the static modes.
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This method was successfully applied to mitigate the target  
nonuniformities on a low-adiabat warm implosion
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The correction made it possible to reduce 
the standard deviation of the target modes  
1, 2, and 3 from ~3.5 nm to ~1 nm.
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Summary/Conclusions

Improved drive symmetry has been demonstrated on OMEGA

This method was applied to low-adiabat shots and made it possible  
to reduce the low-mode nonuniformities from 3.5 nm to 1 nm.

•	 In a series of direct-drive implosions, multiple self-emission x-ray images 
were used to tomographically measure their 3-D modes 1, 2, and 3 at a 
convergence ratio of ~3

•	 The target modes were shown to vary linearly with the laser modes from 
approximately constant static modes

•	 This demonstrated that the target modes can be mitigated by adjusting 
the laser beam-energy balance to compensate the static modes
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Over three shots, the beam-energy balance was changed  
to modify their modes , = 1, , = 2,  , = 3, and for m = 0
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The target modes were obtained by decomposing the four contours translated 
by the target displacement over spherical harmonics
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Errors of d rm
1^ h = !0.15%, d rm

2^ h = !0.1%, and d rm
3^ h = !0.1% were 

obtained by simulating the errors in [ΔR(i)]150 and [ΔRcenter]150.
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The decrease of C, with , was a result of the beam profiles  
that modify the amplitude of the laser modes on target*
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*S. Skupsky and K. Lee, J. Appl. Phys. 54, 3662 (1983).
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The decrease of C, with , was a result of the beam profiles that modify the 
amplitude of the laser modes on target* 
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•	 The modes of the laser beam energy balance are described by minimizing

•	 Accounting for the beam profile, the mode decomposition of the total energy 
per solid angle on target is given by
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A constant coupling of the modes of the target irradiation pattern  
to the target modes is obtained of –0.85 0.07.C a, , !=

*S. Skupsky and K. Lee, J. Appl. Phys. 54, 3662 (1983).

a1 0.79

a2 0.47

a3 0.20
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The 3-D shape of the target was obtained by orienting each contour 
perpendicular to the camera axis
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An error of d R
150

iD ^ h6 @  of 1 nm was evaluated by comparing 
the contours at the connecting points; this error is comparable 
to the error of !0.4 nm estimated previously.
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This method was applied to correct the target nonuniformities  
on a low-adiabat warm implosion
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