Development of Fast and Reliable Free-Energy Density Functional Methods for Simulations of Dense Plasmas from Cold- to Hot-Temperature Regimes

V.V. Karasiev **University of Rochester** Laboratory for Laser Energetics

59th Annual Meeting of the **American Physical Society Division of Plasma Physics** Milwaukee, WI 23-27 October 2017

Summary

Thermal effects on exchange correlation (XC) (especially at $T \approx 0.5 T_F$) must be taken into account to accurately predict the properties of warm dense matter (WDM)

- A framework for temperature-dependent XC functionals for WDM simulations was developed
- Orbital-free generalized gradient approximation (GGA) noninteracting free-energy functionals are accurate at elevated temperatures
- A practical approach makes it possible to extend the range of temperatures accessible for simulations
 - use Kohn–Sham density function theory (DFT) at low temperatures (when it is computationally affordable)
 - use orbital-free DFT with accurate GGA functionals at intermediate and high temperatures

Collaborators

S. X. Hu

University of Rochester Laboratory for Laser Energetics

S. Trickey and J. Dufty

University of Florida

Warm and hot dense matter (HDM) is of interest in geo/astrophysics and in inertial confinement fusion (ICF)

R. P. Drake, Phys. Today <u>63</u>, 28 (2010).

HEDP* requires development of new methods and functionals to accurately predict the properties of matter

Standard computational approach

- Classical molecular dynamics (MD) for ions
- Quantum Kohn–Sham (KS) or orbital-free density functional theory (OF-DFT) for electrons

Computational methods often cease to work at high pressures and temperatures

- Most quantum MD simulations use XC functionals developed for T = 0
- The XC thermal effects in the WDM regime are not taken into account
- There is a drastic increase of computational cost as the temperature increases

 $cost \sim (N_{band})^3$

- Strong quantum effects at intermediate temperatures
- Limited transferability of pseudopotentials and PAW's** developed for near-ambient thermodynamic conditions

*HEDP: high-energy-density physics **PAW: projector augmented wave

We developed a framework for temperature-dependent XC functionals to address the issue of thermal effects

Generalized gradient approximation

Exchange

$$F_{\mathbf{x}}^{\mathbf{GGA}}[n,T] = \int n f_{\mathbf{x}}^{\mathbf{LDA}}(n,T) F_{\mathbf{x}}[\mathbf{s}_{2\mathbf{x}}(T)] d\vec{r}$$

$$F_{\mathbf{x}}(\mathbf{s}_{2\mathbf{x}}) = \mathbf{1} + \frac{\mathbf{v}_{\mathbf{x}} \mathbf{s}_{2\mathbf{x}}}{\mathbf{1} + \alpha |\mathbf{s}_{2\mathbf{x}}|}$$

$$\mathbf{s}_{2\mathbf{x}}(n,\nabla n,T) \equiv \mathbf{s}^{2}(n,\nabla n) \tilde{\mathbf{B}}_{\mathbf{x}}(t);$$

$$\boldsymbol{f}_{\mathbf{X}}^{\mathsf{LDA}}\left(\boldsymbol{n},\boldsymbol{T}\right)=\boldsymbol{\varepsilon}_{\mathbf{X}}^{\mathsf{LDA}}\left(\boldsymbol{n}\right)\tilde{\boldsymbol{A}}_{\mathbf{X}}\left(\boldsymbol{t}\right);\boldsymbol{t}=\boldsymbol{T}/\boldsymbol{T}_{\mathsf{F}}$$

Constraints

- Reproduce finite-temperature gradient expansion
- Satisfy Lieb–Oxford bound at zero-temperature
- Reduce to correct zero-temperature limit
- Reduce to correct high-temperature limit

Correlation

 $F_{c}^{GGA}[n,T] = \int n f_{c}^{GGA}(n, \nabla n, T) d\vec{r}$

GGA correlation energy per particle:

 $\boldsymbol{f_{c}^{\text{GGA}}}\left(\boldsymbol{n},\nabla\boldsymbol{n},\boldsymbol{T}\right) = \boldsymbol{f_{c}^{\text{LDA}}}\left(\boldsymbol{n},\boldsymbol{T}\right) + \boldsymbol{H}\left[\boldsymbol{f_{c}^{\text{LDA}}},\boldsymbol{q_{c}}\left(\boldsymbol{T}\right)\right]$

 $\mathbf{q}_{\mathbf{c}}(\mathbf{n}, \nabla \mathbf{n}, \mathbf{T}) \equiv \mathbf{q}(\mathbf{n}, \nabla \mathbf{n}) \sqrt{\tilde{\mathbf{B}}_{\mathbf{c}}(\mathbf{n}, \mathbf{t})}$

Constraints

- Reproduce finite-temperature gradient expansion
- Reduce to correct zero-temperature limit
- Reduce to correct high-temperature limit

^{*}V.V. Karasiev, J.W. Dufty, and S.B. Trickey, "Non-Empirical Semi-Local Free-Energy Density Functional for Matter Under Extreme Conditions," submitted to Physical Review Letters; see also arXiv: 1612.06266v1.

Orbital-free noninteracting free-energy functionals were developed to address the issue of computational cost at elevated temperature

Noninteracting GGA free energy

$$F_{s}^{GGA}[n,T] = \int d^{3} r \tau_{0}^{TF}(n) \xi(T) F_{\tau}[s_{\tau}(T)]$$

$$-\int d^{3} r \tau_{0}^{TF}(n) \varsigma(T) F_{\sigma}[s_{\sigma}(T)]$$

$$F_{\sigma}^{\text{GGA}}(s_{\sigma}) := 2 - F_{\sigma}^{\text{GGA}}(s_{\sigma})$$

Orbital-free DFT: single Euler equation to solve

$$\frac{\delta F_{s}(n)}{\delta n(r)} + v_{s}[(n);r] = \mu,$$

where $v_s = v_{ext} + v_H + v_{XC}$

- CPU time per MD step as a function of temperature
- The KS results terminate because of run-time limitations
- System: 128 D atoms, 1.964 g/cm³

The most-accurate EOS* of aluminum plasmas (material density in 0.02- to 0.70-g/cm³ range) were calculated with XC thermal effects taken into account

TC13733

*EOS: equation of state **PBE: Perdew–Burke–Ernzerhof [†]KDT16: Karasiev–Dufty–Trickey, 2016

Comparisons between our simulations and experiments indicate that the thermal XC effects are important for electrical dc conductivity

Calculations: V.V. Karasiev, L. Calderín, and S. B. Trickey, Phys. Rev. E 93, 063207 (2016). Experiment: A. W. DeSilva and J. D. Katsouros, Phys. Rev. E 57, 5945 (1998); 59, 3774(E) (1999).

Our temperature-dependent XC calculations of deuterium EOS are in perfect agreement with reference PIMC* results, while the standard zero-temperature PBE calculations overestimate pressure by up to 15%

- Deuterium electron pressure versus temperature for the finite-temperature GGA ("KDT16") and ground-state PBE XC functionals, as well as PIMC reference results
- MD supercell simulations, Γ point only, for 128 atoms (8500 steps, $T \le 40$ kK) or for 64 atoms (4500 steps, $T \ge 62$ kK)

TC13735

S. X. Hu et al., Phys. Rev. B 84, 224109 (2011). *PIMC: path-integral Monte Carlo

With our orbital-free functionals we are able to treat very large systems (thousands of ions) up to very high temperatures (1000 eV or higher) UR 🔌 LLE

Summary/Conclusions

Thermal effects on exchange correlation (XC) (especially at $T \approx 0.5 T_F$) must be taken into account to accurately predict the properties of warm dense matter (WDM)

- A framework for temperature-dependent XC functionals for WDM simulations was developed
- Orbital-free generalized gradient approximation (GGA) noninteracting free-energy functionals are accurate at elevated temperatures
- A practical approach makes it possible to extend the range of temperatures accessible for simulations
 - use Kohn–Sham density function theory (DFT) at low temperatures (when it is computationally affordable)
 - use orbital-free DFT with accurate GGA functionals at intermediate and high temperatures

