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Thermal effects on exchange correlation (XC) (especially at T ≈ 0.5 TF) 
must be taken into account to accurately predict the properties  
of warm dense matter (WDM)

•	 A framework for temperature-dependent XC functionals for WDM simulations was developed

•	 Orbital-free generalized gradient approximation (GGA) noninteracting free-energy functionals 
are accurate at elevated temperatures

•	 A practical approach makes it possible to extend the range of temperatures accessible  
for simulations

–– use Kohn–Sham density function theory (DFT) at low temperatures  
(when it is computationally affordable)

–– use orbital-free DFT with accurate GGA functionals at intermediate and high temperatures

2

Summary



Collaborators

S. X. Hu

University of Rochester 
Laboratory for Laser Energetics

S. Trickey and J. Dufty

University of Florida

3



TC13727

Warm and hot dense matter (HDM) is of interest in geo/astrophysics  
and in inertial confinement fusion (ICF)
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HEDP* requires development of new methods and functionals  
to accurately predict the properties of matter

Computational methods often cease to work  
at high pressures and temperatures

•	 Most quantum MD simulations use XC 
functionals developed for T = 0

•	 The XC thermal effects in the WDM regime 
are not taken into account

•	 There is a drastic increase of computational 
cost as the temperature increases  

•	 Strong quantum effects at intermediate 
temperatures

•	 Limited transferability of pseudopotentials 
and PAW’s** developed for near-ambient 
thermodynamic conditions

5

Standard computational approach

•	 Classical molecular dynamics (MD) for ions

•	 Quantum Kohn–Sham (KS) or orbital-free density 
functional theory (OF-DFT) for electrons
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We developed a framework for temperature-dependent XC functionals 
to address the issue of thermal effects

Exchange

Constraints

•	 Reproduce finite-temperature  
gradient expansion

•	 Satisfy Lieb–Oxford bound at zero-temperature

•	 Reduce to correct zero-temperature limit

•	 Reduce to correct high-temperature limit

Constraints

•	 Reproduce finite-temperature  
gradient expansion

•	 Reduce to correct zero-temperature limit

•	 Reduce to correct high-temperature limit

Correlation
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Orbital-free noninteracting free-energy functionals were developed 
to address the issue of computational cost at elevated temperature

Noninteracting GGA free energy

Orbital-free DFT: 
single Euler equation to solve
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•	 CPU time per MD step as a function of temperature

•	 The KS results terminate because of run-time limitations  

•	 System: 128 D atoms, 1.964 g/cm3  
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The most-accurate EOS* of aluminum plasmas (material density in 0.02- to 
0.70-g/cm3 range) were calculated with XC thermal effects taken into account
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Total pressure along four isotherms (T = 10, 
15, 30, and 60 kK) for the ground-state PBE** 
(dotted curves) and finite-temperature KDT16† 
(dashed curves) XC functionals 

Relative magnitude of XC thermal effects for pressure:
(PPBE − PKDT16)/PPBE × 100%

0.5
1

10

100

500

 P
 (

kb
ar

)
D

P
/P

 (
%

) 

KS + PBE
OF-DFT + PBE
OF-DFT + KDT16

0.02 0.10 0.70
t (g/cm3)

0

10

20

30 10 kK
15 kK
30 kK
60 kK

		*EOS: equation of state
**PBE: Perdew–Burke–Ernzerhof
		†KDT16: Karasiev–Dufty–Trickey, 2016
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Comparisons between our simulations and experiments indicate that  
the thermal XC effects are important for electrical dc conductivity
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•	 Aluminum dc conductivity as a function  
of density for T = 10 and 30 kK

•	 Perdew–Zunger (PZ) ground-state XC versus 
finite-temperature Karasiev–Sjostrom–
Dufty–Trickey (KSDT)
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Calculations:  V. V. Karasiev, L. Calderín, and S. B. Trickey, Phys. Rev. E 93, 063207 (2016).
Experiment:  A. W. DeSilva and J. D. Katsouros, Phys. Rev. E 57, 5945 (1998); 59, 3774(E) (1999).
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Our temperature-dependent XC calculations of deuterium EOS are in perfect 
agreement with reference PIMC* results, while the  standard zero-temperature 
PBE calculations overestimate pressure by up to 15%
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•	 Deuterium electron pressure versus temperature for the finite-temperature GGA 
(“KDT16”) and ground-state PBE XC functionals, as well as PIMC reference results

•	 MD supercell simulations, C point only, for 128 atoms (8500 steps, T ≤ 40 kK)  
or for 64 atoms (4500 steps, T ≥ 62 kK)

tD = 0.506 g/cm3
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*PIMC: path-integral Monte Carlo
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With our orbital-free functionals we are able to treat very large systems 
(thousands of ions) up to very high temperatures (1000 eV or higher)
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Summary/Conclusions

Thermal effects on exchange correlation (XC) (especially at T ≈ 0.5 TF) 
must be taken into account to accurately predict the properties  
of warm dense matter (WDM)

•	 A framework for temperature-dependent XC functionals for WDM simulations was developed

•	 Orbital-free generalized gradient approximation (GGA) noninteracting free-energy functionals 
are accurate at elevated temperatures

•	 A practical approach makes it possible to extend the range of temperatures accessible  
for simulations

–– use Kohn–Sham density function theory (DFT) at low temperatures  
(when it is computationally affordable)

–– use orbital-free DFT with accurate GGA functionals at intermediate and high temperatures


