Simulation and Analysis of Time-Gated Monochromatic Radiographs of Cryogenic Implosions on OMEGA

59th Annual Meeting of the **American Physical Society Division of Plasma Physics** Milwaukee, WI 23-27 October 2017

Summary

In-flight opacity profiles of converging cryogenic DT shells have been inferred with monochromatic soft x-ray radiography on OMEGA

- Analysis of an entire radiograph, based on Abel inversion of radial absorption distributions, improves its effective signal-to-noise ratio
- Mass-density profiles are inferred from opacity profiles by assuming that the free-free opacity of hydrogen applies everywhere, which is compromised by unablated shell polymer
- Abel inversion of radiographs into radial opacity profiles can provide a useful view of the evolved distribution of unablated shell polymer

Collaborators

C. Stoeckl, V. N. Goncharov, P. W. McKenty, S. P. Regan, and P. B. Radha

University of Rochester Laboratory for Laser Energetics

3

A Si He_{α} backlighter casts distinct DT shell and CH remnant shadows during the late convergence phase of an implosion

Mass density can be inferred quantitatively where the shell is pure hydrogen

• Abel inversion gives the radial-opacity distribution $\kappa(r)$ from the planar optical thickness distribution projected onto a plane (x, y)

$$\tau(\mathbf{x},\mathbf{y}) \propto \int_{\text{backlight}}^{\text{camera}} \kappa(\mathbf{x},\mathbf{y},\mathbf{z}) d\mathbf{z} \text{ assume: } \kappa = \kappa_{\text{ff}} \propto \left[\frac{\rho}{T^{1/4}}\right]^2 \longrightarrow \rho \propto \kappa_{\text{ff}}^{1/2} T^{1/4} *$$

- With the weak temperature (7) dependence of the free-free (ff) opacity, shell-average temperatures from simulations suffice for this purpose
- C absorption exceeds H absorption per ion by a very large factor

 $\sigma_{\rm H}^{\rm ff} \propto n_{\rm e} Z_{\rm H}^2 \quad \sigma_{\rm C}^{\rm bf} \propto Z_{\rm C}^4 \quad Z_{\rm C}^4 / Z_{\rm H}^2 \approx 1300$

- For now, the analysis will assume pure hydrogen throughout the imploded shell, but unablated and/or mixed CH will be easy to spot
- Multi-material radiography requires additional modeling and/or assumptions

TC13926

Flattening and circularizing a synthetic radiograph with a nonuniform backlight recovers the opacity profile of a hypothetical object

- An eight-parameter model is fit to the unobscured portion of the backlight distribution and then divided out of the entire radiograph
- The flattened radiograph is then circularly averaged, effectively using all the information available in the radiograph

TC13927

The simulated radiograph shows consistency with the simulated D₂ shell density profile with additional absorption as a result of an unablated trace of shell CD

10.1- μ m shell, 95- μ m cryo D₂, 866- μ m-diam, 80-ps framing camera gate

• CD absorption compromises analysis based on the free–free opacity of hydrogen

*R. Epstein, V. A. Smalyuk et al., Bull. Am. Phys. Soc. 54, 306 (2009).

Circularized radiograph Mass density from Abel inversion and the opacity **LILAC** mass density at 3.6 ns

Laser nonuniformity imprint perturbs the implosion, which blurs and broadens radiographic features

ROCHESTER

TC13222a

Abel inversion separates the hydrodynamically mixed shell CH distribution from the cryogenic DT shell distribution

ROCHESTER

Measurement DRACO/Spect3D LILAC/Spect3D **LILAC density profile**

Abel inversion separates the hydrodynamically mixed shell CH distribution from the cryogenic DT shell distribution

Measurement DRACO/Spect3D LILAC/Spect3D LILAC density profile

Summary/Conclusions

In-flight opacity profiles of converging cryogenic DT shells have been inferred with monochromatic soft x-ray radiography on OMEGA

- Analysis of an entire radiograph, based on Abel inversion of radial absorption distributions, improves its effective signal-to-noise ratio
- Mass-density profiles are inferred from opacity profiles by assuming that the free-free opacity of hydrogen applies everywhere, which is compromised by unablated shell polymer
- Abel inversion of radiographs into radial opacity profiles can provide a useful view of the evolved distribution of unablated shell polymer

