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E26720

Precompressed CO2 was shocked to ~1 TPa and is less compressible  
than predicted by current models

•	 Ice giants (Uranus, Neptune) and their moons (Triton) contain CO2, 
which may contribute to planetary dynamics

•	 CO2 was precompressed in diamond-anvil cells to a liquid  
at ~1.16 GPa and shock compressed to 980 GPa

•	 Shock velocity and self-emission were measured to provide  
Hugoniot, reflectivity, and temperature data

•	 Shock-compressed CO2 exhibits stiffer behavior than predicted  
by density functional theory (DFT)
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Diamond-anvil cells precompressed CO2 that was shock compressed  
with the OMEGA laser

•	 CO2 samples were precompressed to 1.2 GPa in diamond-
anvil cells and driven with laser shocks to 980 GPa 

•	 Impedance matching was performed to the quartz standard

•	 Shock velocity, emission, and reflectance were measured  
using VISAR and SOP
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Experimental Setup

	*	VISAR: velocity interferometer system for any reflector
**	SOP: streaked optical pyrometer
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Simultaneous VISAR and pyrometer data provided a temporal profile  
of the shock velocity and temperature
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Results
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Simultaneous VISAR and pyrometer data provided a temporal profile  
of the shock velocity and temperature
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The impedance-matching method relies on the shock  
and release behaviors of a known standard
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The impedance-matching method relies on the shock  
and release behaviors of a known standard
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Equation-of-state data are obtained from the impedance-matching technique 
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Equation-of-state data are obtained from the impedance-matching technique 
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Equation-of-state data are obtained from the impedance-matching technique 



OMEGA data
Re-analysis of Root* data
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Particle velocities were inferred from impedance matching to obtain Us(Up) 
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*	S. Root et al., Phys. Rev. B 87, 224102 (2013).
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The Us – Up relation for CO2 exhibits linear behavior  
when accounting for precompression
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Compression ratio
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In the pressure–compression plane, the effect of precompression  
is readily apparent
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In the pressure–compression plane, the effect of precompression  
is readily apparent with the fit Us = C0 + sUp + at0

–0.5
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The current model for shocked CO2 (Boates) predicts a softer behavior  
than our data indicates
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B. Boates et al., J. Chem. Phys. 134, 064504 (2011).
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The Boates’ model reasonably predicts our observed temperatures;  
the effect of precompression is less pronounced 
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Summary/Conclusions 

E26720

Precompressed CO2 was shocked to ~1 TPa and is less compressible  
than predicted by current models

•	 Ice giants (Uranus, Neptune) and their moons (Triton) contain CO2, 
which may contribute to planetary dynamics

•	 CO2 was precompressed in diamond-anvil cells to a liquid  
at ~1.16 GPa and shock compressed to 980 GPa

•	 Shock velocity and self-emission were measured to provide  
Hugoniot, reflectivity, and temperature data

•	 Shock-compressed CO2 exhibits stiffer behavior than predicted  
by density functional theory (DFT)


