Dependence of Shock Timing on Coronal Parameters for OMEGA Direct-Drive Implosions

D. Cao **University of Rochester** Laboratory for Laser Energetics

59th Annual Meeting of the **American Physical Society Division of Plasma Physics** Milwaukee, WI 23-27 October 2017

Summarv

Shock-timing simulations show sensitivity to variations in conduction-zone length

- Shock-merger time predictions with mid-adiabat pulse shapes are reproducible in experiments, but agreement degrades for low-adiabat pulse shapes
- Shock-merger time is hypothesized to be dependent on laser deposition position
- Simulations reproduce dependence on laser deposition position, showing high correlation between shock timing and conduction-zone length
- Conduction-zone length prediction is correlated to observations of the corona x-ray self-emission profile, opening an avenue for validation experiments

Collaborators

T. R. Boehly, P. B. Radha, D. N. Polsin, A. K. Davis, S. P. Regan, and V. N. Goncharov

> University of Rochester Laboratory for Laser Energetics

Shock-merger time predictions with mid-adiabat pulse shapes are reproducible in experiments, but agreement degrades for low-adiabat pulse shapes

ROCHESTER

TC13804

*VISAR: velocity interferometer system for any reflector

Shock-merger time prediction is influenced by coronal profiles and the latter affects the laser deposition position

Simulations are used to quantify the effect of changing corona profiles on shock timing.

Two-picket *LILAC* simulations are used to quantify shock-timing sensitivity to the corona profiles

Simulations show that shifts in laser deposition position does reproduces changes in shock position

ROCHESTER

Simulations show that shifts in laser deposition position does reproduces changes in shock position

ROCHESTER

TC13806a

Simulations can reproduce observed trends from experiments by varying corona profiles, showing sensitivity to the conduction-zone length

Previous data* have shown evidence of differences between experiment and prediction of corona profiles by using x-ray self-emission images

These measurements will be adapted to studies with picket pulses

*A. K. Davis *et al.*, NO8.00007, presented at the 58th Annual Meeting of the APS Division of Plasma Physics, San Jose, CA, 31 October–4 November 2016.

Shock-timing simulations show sensitivity to variations in conduction-zone length

- Shock-merger time predictions with mid-adiabat pulse shapes are reproducible in experiments, but agreement degrades for low-adiabat pulse shapes
- Shock-merger time is hypothesized to be dependent on laser deposition position
- Simulations reproduce dependence on laser deposition position, showing high correlation between shock timing and conduction-zone length
- Conduction-zone length prediction is correlated to observations of the corona x-ray self-emission profile, opening an avenue for validation experiments

