The Physics of Low- and Mid-Mode Asymmetries of the Hot Spot
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The neutron-averaged observables can differ from the hot-spot
volume-averaged quantities; the differences although small for low modes
are more pronounced for mid-mode asymmetries
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* The asymmetries are divided into low and mid modes by comparison
of the mode wavelength with the hot-spot radius

e Low modes introduce nonradial motion, whereas mid modes
involve cooling by thermal losses

 The energy distribution at stagnation is similar for both asymmetry
types; however, the fusion reaction distribution is different

e A general expression is found relating the pressure degradation
to the residual shell energy and the flow within the hot spot
(i.e., the total residual energy)
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Simulation Technique

The radiation—hydrodynamic code DEC2D* is used to simulate
the deceleration phase of implosions
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The observables for cryogenic implosions on OMEGA* can
be reproduced using a combination of low and mid modes**

Hot-spot shape at bang time
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For low-mode asymmetries the bubbles are hot and sustain fusion
reactions, while for mid modes they are cooled by thermal losses
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 Low mode (AgT > Rp)
— bubbles are hot and sustain fusion

— hot spot is isobaric (approximately)

— nonradial flow motion in the shocked
shell and hot spot
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e Mid mode (ARt < Rp)

— bubbles are cold and do not produce fusion
— hot spot is not isobaric VP ~ Mach?
— radially inward and outward motion

RT: Rayleigh—Taylor



For implosions with asymmetries, the neutron-averaged and the volume-
averaged quantities are different, but the differences are less
for low modes and more pronounced for mid modes
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The energy distribution in different regions of an implosion
is similar for low and mid modes
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A general expression is found relating the pressure degradation
to the total residual energy and the flow within the hot spot
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Summary/Conclusions

The neutron-averaged observables can differ from the hot-spot
volume-averaged quantities; the differences although small for low modes
are more pronounced for mid-mode asymmetries
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* The asymmetries are divided into low and mid modes by comparison
of the mode wavelength with the hot-spot radius

e Low modes introduce nonradial motion, whereas mid modes
involve cooling by thermal losses

 The energy distribution at stagnation is similar for both asymmetry
types; however, the fusion reaction distribution is different

e A general expression is found relating the pressure degradation
to the residual shell energy and the flow within the hot spot
(i.e., the total residual energy)
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