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Summary

Inertial confinement fusion (ICF) laser facilities [OMEGA and the 
National Ignition Facility (NIF)] have been used to probe a variety 
of physics phenomena in high-energy-density plasmas

•	 Shock-driven ICF implosions have
–	demonstrated ion kinetic effects
–	been used to probe strongly driven magnetic reconnection

•	 A strong trend of decreasing yield-over-clean (YOC) with an increasing 
Knudsen number (NK = mii/Rfuel) for NK > 0.1 is observed and attributed 
to ion diffusion and the preferential escape of high-energy ions

•	 The magnetic reconnection rate in laser-produced, strongly driven plasmas 
is dictated by the flow velocity and is insensitive to initial asymmetries
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The MIT High-Energy-Density (HED) Accelerator is both a valuable hands-on 
training ground and an essential facility for developing diagnostics
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•	 Ion kinetic effects during the shock-convergence phase of ICF implosions

•	 Asymmetric magnetic reconnection in strongly driven, laser-produced plasmas
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•	 Ion kinetic effects during the shock-convergence phase of ICF implosions

•	 Asymmetric magnetic reconnection in strongly driven, laser-produced plasmas
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Ion Kinetic Effects Motivation

In hot-spot ICF, strong shocks set the initial fuel conditions 
prior to main compression and burn
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Ion Kinetic Effects Motivation

Shock-driven “exploding pushers” generate kinetic conditions similar 
to the shock-convergence phase of hot-spot–ignition implosions
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	 *	H. Robey
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These implosions are a simple test bed for exploring ion kinetic effects independent 
of the complicated physics at compression (e.g., hydrodynamic instabilities).
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A fuel-density scan in D3He-filled exploding pushers on the 60-beam 
OMEGA laser was used to isolate and study ion kinetic effects
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M. J. Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014).
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These experiments attempt to identify the conditions under which hydrodynamic models break down.
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As tgas is decreased, mii increases from ~50 nm to ~1000 nm 
and NK = mii/Rfuel increases from ~0.3 to 10
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Implosions spanned the “strongly kinetic” to “hydrodynamic-like” regimes.
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Measured DD and D3He yields drop off sharply in the high-NK/kinetic limit
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Hydrodynamic simulations increasingly deviate from the data in the kinetic regime
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All hydro simulations (DUED, LILAC, HYADES, etc.) show these yield trends.
†	Simulations by N. M. Hoffman, LANL
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Including “reduced ion kinetic”* models in a hydro simulation brings 
modeled yields into better agreement with the experiment
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Reduction of fusion reactivity caused by non-Maxwellian tail 
ion loss** and ion diffusion are inferred to be significant.

	 *	N. M. Hoffman et al., Phys. Plasmas 22, 052707 (2015).
	 **	K. Molvig et al., Phys. Rev. Lett. 109, 95001 (2012); 
		 B. J. Albright et al., Phys. Plasmas 20, 122705 (2013).
	 †	Simulations by N. M. Hoffman, LANL
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Direct-drive exploding pushers on the NIF were also studied 
to investigate ion kinetic effects 
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*M. J. Rosenberg et al., Phys. Plasmas 21, 122712 (2014).

NIF exploding pushers provide access to the low-NK regime in shock-driven implosions.
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Exploding pushers on the NIF and OMEGA show a unified 
trend of decreasing DD YOC with increasing NK
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	 *	Compared to HYDRA, S. Le Pape et al., Phys. Rev. Lett. 112, 225002 (2014).
	 **	Compared to DRACO, M. J. Rosenberg et al., Phys. Plasmas 21, 122712 (2014).
	***	Compared to DUED, M. J. Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014).

Shock-convergence phase of hot-spot–ignition implosions 
is in a regime where kinetic effects start to become prevalent.
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•	 Ion kinetic effects during the shock-convergence phase of ICF implosions

•	 Asymmetric magnetic reconnection in strongly driven, laser-produced plasmas
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Magnetic Reconnection Motivation

(Asymmetric) magnetic reconnection is a ubiquitous 
phenomenon in both astrophysical and laboratory plasmas, 
where antiparallel magnetic fields merge and annihilate
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Magnetic Reconnection Motivation

(Asymmetric) magnetic reconnection is a ubiquitous 
phenomenon in both astrophysical and laboratory plasmas, 
where antiparallel magnetic fields merge and annihilate
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Magnetic fields are generated in laser–foil interactions 
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J. A. Stamper et al., Phys. Rev. Lett. 26, 1012 (1971).
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Magnetic fields are generated in laser–foil interactions 
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Parameter Value at perimeter

Magnetic field ~0.5 MG

Electron density ~1020 cm–3

Plasma beta (b) ~10

Flow velocity (Vb) ~500 nm/ns

Alfvén speed (VA) ~100 nm/ns

Vb/VA > 1 indicates a 
strongly driven reconnection.

J. A. Stamper et al., Phys. Rev. Lett. 26, 1012 (1971).



Magnetic fields are generated in laser–foil interactions 
and magnetized plasma bubble pairs can be driven to reconnect
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This class of experiments is an established platform for high-b, strongly driven reconnection,** 
and is distinct from most reconnection experiments (tenuous plasmas, b % 1, quasi-steady state).

*J. A. Stamper et al., Phys. Rev. Lett. 26, 1012 (1971).
**P. M. Nilson et al., Phys. Rev. Lett. 97, 255001 (2006); C. K. Li et al., Phys. Rev. Lett. 99, 055001 (2007); 
**and J. Zhong et al., Nat. Phys. 6, 984 (2010).



Monoenergetic proton radiography has been used on OMEGA to study magnetic- 
field evolution in strongly driven asymmetric reconnection experiments
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Images have been analyzed to infer quantitative maps of dBx l#  from proton beamlet deflection.
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Maps of path-integrated magnetic-field strength show the deformation 
and annihilation of magnetic-field structures 
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Magnetic flux is measured at the perimeter of each bubble 
and in the interaction region and compared to infer the annihilated flux
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A simple, flow-based model posits that flux is annihilated 
at the rate that magnetic fields advect into the reconnection region
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Vb Vb Vb Vb

t = tcollision t =  tint + tcollision

z0 z0 – Vbtint

Total amount of flux annihilated based on flow velocity is:  dV Bx lt2 intb # .

dBx l# dBx l# dBx l# dBx l#

Total flux = dBx l z2 0# Total flux = –dBx l z v t2 b int0^ h#
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Flux is annihilated at the flow-based rate in both symmetric 
and asymmetric experiments
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The reconnection rate in this strongly driven system 
is much faster than the nominal Alfvén speed
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	 M. J. Rosenberg et al., Nat. Commun. 6, 6190 (2015).
*W. Fox, A. Bhattacharjee, and K. Germaschewski, 	
Phys. Rev. Lett. 106, 215003 (2011).

In this strongly driven system, regardless of asymmetries, reconnection occurs 
at a super-Alfvénic rate dictated by flow velocity as a result of flux pileup.*
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Summary/Conclusions

Large laser facilities are an excellent platform for fundamental and programmatic science, 
and an outstanding training ground for the next generation of high-energy-density scientists.

Inertial confinement fusion (ICF) laser facilities [OMEGA and the 
National Ignition Facility (NIF)] have been used to probe a variety 
of physics phenomena in high-energy-density plasmas

•	 Shock-driven ICF implosions have
–	demonstrated ion kinetic effects
–	been used to probe strongly driven magnetic reconnection

•	 A strong trend of decreasing yield-over-clean (YOC) with an increasing 
Knudsen number (NK = mii/Rfuel) for NK > 0.1 is observed and attributed 
to ion diffusion and the preferential escape of high-energy ions

•	 The magnetic reconnection rate in laser-produced, strongly driven plasmas 
is dictated by the flow velocity and is insensitive to initial asymmetries
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On OMEGA, D3He exploding pushers have provided an isotropic source 
of monoenergetic protons for backlighting laser-plasma experiments
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C. K. Li et al., Rev. Sci. Instrum. 77, 10E725 (2006).
M. J.-E. Manuel et al., Rev. Sci. Instrum. 83, 063506 (2012).
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This backlighting technique provides quantitative information and 
images of electric and magnetic fields in HED plasma experiments
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To better understand ion kinetic effects, penumbral imaging 
of DD and D3He reactions was used to infer burn profiles

32

M. J. Rosenberg et al., Phys. Plasmas 22, 062702 (2015).
Penumbral imaging technique:
F. H. Séguin et al., Rev. Sci. Instrum. 75, 3520 (2004);
F. H. Séguin et al., Phys. Plasmas 13, 082704 (2006).
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To better understand ion kinetic effects, penumbral imaging 
of DD and D3He reactions was used to infer burn profiles
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In the “kinetic” regime, measured spatial burn profiles are centrally peaked, 
in stark contrast to a pure-hydro model
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*Simulations by P. Amendt, LLNL
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Inclusion of ion diffusion recovers the centrally peaked burn profiles 
observed experimentally
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**R. W. Schunk, Rev. Geophys. Space Phys. 15, 429 (1977); Simulations by P. Amendt, LLNL
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