Observation of Solid–Solid Phase Transitions in Ramp-Compressed Aluminum

D. Polsin

58th Annual Meeting of the **American Physical Society Division of Plasma Physics** San Jose, CA 31 October-4 November 2016

We present the first observation of bcc aluminum; a high-pressure, solid-aluminum phase that exists at pressures above ~400 GPa

- Aluminum is frequently used as a standard material in high-pressurecompression experiments
- Density functional theory (DFT) calculations predict a progression of structural changes, from fcc-hcp-bcc, with increasing pressure along the isentrope
- Al was ramp-compressed and x-ray-diffraction (XRD) data measured the progression of phases fcc-hcp-bcc at pressures of 80 to 540 GPa

E25405a

fcc = face-centered cubic

bcc = body-centered cubic

hcp = hexagonal close packed

Collaborators

T. R. Boehly, J. A. Delettrez, G. W. Collins, J. R. Rygg, M. C. Gregor, and R. J. Henderson

> University of Rochester Laboratory for Laser Energetics

> > C.A. McCoy

Sandia National Laboratories

D. E. Fratanduono, R. Smith, R. Kraus, J. H. Eggert, F. Coppari, and P. M. Celliers

Lawrence Livermore National Laboratory

Properties of Aluminum

E25407a

ROCHESTER

Aluminum is predicted to undergo fcc-hcp and hcp-bcc solid-solid phase transitions as it is compressed at low temperatures

DAC: diamond-anvil cell *Y. Akahama et al., Phys. Rev. Lett. <u>96</u>, 045505 (2006).

CMMA Electride

The OMEGA EP laser ramp-compressed aluminum to various constant-pressure states

*VISAR: velocity interferometer system for any reflector

Ramp Compression

The samples were probed with 8.4-keV x rays with 1-ns duration, and pressure was determined from VISAR–interface velocities

The diamond pusher and LiF tamper confine the sample; reverberations create a uniform pressure.

Aluminum/LiF-interface velocity and pressure

6

X-Ray Diffraction

"Powder" x-ray diffraction (XRD) uses a powdered sample, where a sufficiently large number of crystalline planes are randomly oriented to satisfy the Bragg condition

X-ray Diffraction

Powder XRD patterns are recorded using the powder x-ray diffraction image plates (PXRDIP) diagnostic on OMEGA EP

VISAR measured interface velocities to infer the pressure state of the sample.

J. R. Rygg et al., Rev. Sci. Instrum. 83, 113904 (2012).

fcc-hcp Aluminum

When pressure was increased from 118 GPa to 333 GPa, two diffraction lines were newly observed, consistent with hcp aluminum and distinct from fcc

E25443a

$n\lambda = 2d \sin\theta$

hcp-bcc Aluminum

Above 465 GPa, the two hcp lines disappear, replaced by a single intense line consistent with (110) bcc aluminum that exhibits significantly less texture

E25412d

This is the first experimental observation of the predicted bcc phase of aluminum.

Results

Aluminum stress-density equation of state (EOS) is constructed using the measured interatomic spacing

RÖCHESTER

E25545

We present the first observation of bcc aluminum; a high-pressure, solid-aluminum phase that exists at pressures above ~400 GPa

- Aluminum is frequently used as a standard material in high-pressurecompression experiments
- Density functional theory (DFT) calculations predict a progression of structural changes, from fcc-hcp-bcc, with increasing pressure along the isentrope
- Al was ramp-compressed and x-ray-diffraction (XRD) data measured the progression of phases fcc-hcp-bcc at pressures of 80 to 540 GPa

E25405a

fcc = face-centered cubic

bcc = body-centered cubic

hcp = hexagonal close packed