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Summary

Initial wavelength-detuning experiments at the National Ignition Facility (NIF) 
successfully demonstrated cross-beam energy transfer (CBET) mitigation 
in polar direct drive (PDD)

• The first wavelength-detuning experiments measured changes in shape, 
shell trajectory, and scattered light as predicted by simulations

– e.g., the predicted equatorial mass accumulation was observed, 
which is a by-product of efficient equatorial drive with non-optimal 
spot shapes and a nearly “round” shell in PDD

• The successful NIF wavelength-detuning experiments lay the foundation 
for future advances: larger ∆m0, multiple wavelengths, flexible wavelength 
distribution, optimized spot shapes, etc.
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The majority of CBET occurs over the equatorial region in PDD

• CBET reduces the laser drive by as much as 30%, making CBET mitigation the most important design issue

• Equatorial beams dominate the CBET interaction in PDD

• Wavelength detuning and spot-masking apodization (SMA) significantly mitigate CBET and provide a path 
for higher convergence

– these combined mitigation methods can be used on symmetric direct drive (SDD) and PDD
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Backscatter mode

Pump beam

Target
rcrit

Probe beam

CBET causes probe rays
to extract energy from
high-intensity pump rays

CBET mitigation in PDD 
predominantly affects 
the equatorial region.
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Cone swapping in one hemisphere on the NIF induces the desired wavelength 
difference around the equator 
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• Two colors are assigned in the NIF’s current configuration: Cones 1 and 2 are red shifted; 
Cone 3 is blue shifted

• When ports are repointed in the typical PDD manner, identical colors cover the equator
– this configuration will not mitigate CBET

Port-color arrangement Port-color repointing; normal PDD

Indicates quad-split ports

Will not
mitigate
CBET
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Cone swapping in one hemisphere on the NIF induces the desired wavelength 
difference around the equator 
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• Only a modest . ( )A UV2 30 !mD = c  detuning is available in the current configuration
– mitigation strategies for armor-glass metal clips will alleviate this constraint

• Cone swapping in one hemisphere was necessary to induce a wavelength difference over the equator
– side effect is an asymmetric configuration with nonideal equatorial spot shapes
– a reconfiguration of the fiber front end will alleviate this constraint

Port-color arrangement Port-color repointing; after swap

Indicates quad-split ports

Hemispheric
Dm0
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The first cone-swapping wavelength-detuning experiments on the NIF 
demonstrated CBET mitigation
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NIF cone-swapping Dm0 campaign:
Designer: J. A. Marozas
RI: M. Hohenberger/M. J. Rosenberg
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Increased absorption by means of wavelength detuning 
enhances the equatorial shell trajectory as predicted
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Measured self-emission images show similar morphology 
and late-time higher compression effects
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. A UV2 30 !mD = c ^ h

00mD =

• Similar trend as backlit images
– deviation from simulation attributed to imprint*

*P. B. Radha et al., Phys. Plasmas 23, 056305 (2016).
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Hemispheric wavelength detuning mitigates CBET 
and consequently reduces scattered light

10

• The scattered light is asymmetric because 
of the single hemisphere cone swapping; 
causes larger spots to be repointed to the 
equator in the southern hemisphere

• The northern pole brightens with active 
Dm0, indicating the higher compression plus 
non-optimal spot shapes (no SMA)

• The scattered light is reduced with active 
Dm0, especially in the southern hemisphere
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Hemispheric wavelength detuning mitigates CBET 
and consequently reduces scattered light
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Detuning simulation comparison 
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Hemispheric wavelength detuning mitigates CBET 
and consequently reduces scattered light
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Measured and simulated chirped-scattered-light data are in good agreement 
and show decreased scattered light for active detuning
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Summary/Conclusions

Initial wavelength-detuning experiments at the National Ignition Facility (NIF) 
successfully demonstrated cross-beam energy transfer (CBET) mitigation 
in polar direct drive (PDD)

• The first wavelength-detuning experiments measured changes in shape, 
shell trajectory, and scattered light as predicted by simulations

– e.g., the predicted equatorial mass accumulation was observed, 
which is a by-product of efficient equatorial drive with non-optimal 
spot shapes and a nearly “round” shell in PDD

• The successful NIF wavelength-detuning experiments lay the foundation 
for future advances: larger ∆m0, multiple wavelengths, flexible wavelength 
distribution, optimized spot shapes, etc.
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Wavelength-detuning CBET mitigation for polar and symmetric direct drive
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Measured and simulated chirped-scattered-light data are in good agreement 
and show decreased scattered light for active detuning
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Note: some diagnostic ports show some anomalies that are under investigation
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Laser-energy coupling loss caused by CBET can be mitigated in different 
domains that can be combined

• Spatial domain (reduction of the interaction volume)
– dynamic spot-shape changes; “zooming”

- reduces on-target energy, induces long-wavelength nonuniformity, and increases imprint
– spot-shape apodization

- static spot-shape design tailored to the target 
- use optimal super-Gaussian shape while not altering imprint

• Spectral domain (wavelength detuning)
– detuning shifts resonances into lower interaction volumes
– does not induce spot-shape distortion or imprint
– all required technologies exist, i.e., no R&D; low risk
– will cause system-wide optics upgrades and downtime; high cost
– detuning is more effective in PDD

• Temporal domain 
– time multiplexed pulses reduce interaction-time overlap
– requires short pulses to minimize affect on hydrodynamics
– causes increased peak power
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The interaction of crossed laser beams within an expanding 
plasma causes CBET between beams
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*C. J. Randall, J. R. Albritton, and J. J. Thomson, Phys. Fluids 24, 1474 (1981).

• This stimulated Brillouin scattering (SBS)-based interaction leads to a resonance condition for 
transferring energy between a pump ray and a probe ray by means of an ion-acoustic wave ka*

• The resonance condition peaks when the matching condition is met
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The CBET effect is modeled by generalizing collinear interacting plane waves 
to include arbitrary incidence angles and polarization*

• The exponential CBET gain or loss factor is given by
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****C. J. Randall, J. R. Albritton, and J. J. Thomson, Phys. Fluids 24, 1474 (1981).
****ASR = angular-spectrum representation
****P. Michel, LLE/LLNL Meeting (May 2014). 
** †IBS = inverse bremsstrahlung
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The CBET interactions can be grouped roughly 
into two modes

• The laser-beam interaction for directly driven targets (symmetric or 
PDD) covers a wide variety of angles, frequencies, and directions

– refraction, chirping, and multibeam geometry are responsible
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• Similar to the ring energy transfer 
used for NIF indirect-drive ignition (IDI)

• Has minimal impact on absorption
• The primary CBET mode that 

reduces energy absorption

Sidescatter mode

Target

Backscatter mode

Pump beam

Target
rcrit

Probe beam

CBET causes probe rays
to extract energy from
high-intensity pump rays
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The sidescatter mode causes an inbound beam-to-beam CBET exchange

• The sidescatter mode occurs when both beams are inbound or outbound
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• The resonance condition still peaks where the fluid is supersonic (small D~)

• The ka  is much smaller, however, and the angle ki a can be near orthogonal, 
which implies that the ka • Vfluid term no longer dominates

– the sign of the D~ can now determine gain/loss for smaller values
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ka = kpump– kprobe 

vfluid
kprobe
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Target
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The backscatter mode dominates the CBET loss for directly driven targets

• The backscatter mode occurs for opposing beams
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• The resonance condition peaks where the fluid is supersonic (small D~)

• As the frequency difference increases, the resonance condition shifts to lower/higher sonic speeds 
depending on the sign (e.g., 6. , . for A UVM 0 4 1 6 != - c" , )

– dominated by the ka • Vfluid term; its sign determines whether there is gain/loss
– frequency difference cannot alter the gain/loss unless it can counter the large 

ka • Vfluid term (e.g., !20-Å UV)
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Successful wavelength detuning shifts the resonance
location sufficiently to mitigate CBET
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Parabolic locus 
of turning points

When probe rays are red-shifted, 
the resonance shifts to a lower Mach 
number where probe rays are blocked 
and/or have negligible intensity

When probe rays are blue-shifted, the 
resonance shifts to a higher Mach 
number where intersecting probe rays 
are negligible

Pump beam

Target

Probe beam

CBET causes probe rays
to extract energy from
high-intensity pump raysrc

• The magnitude of Dm0 determines the mitigation duration
– works for both symmetric and PDD
– tailoring the spot shape will help limit the required Dm0
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The simulated shell trajectories indicate measurable differences detectable 
with the gated x-ray framing camera

• At 900 ps, the shell radius is 32 nm smaller for wavelength detuning
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