Wavelength Detuning Cross-Beam Energy Transfer
Mitigation for Polar and Symmetric Direct Drive
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Initial wavelength-detuning experiments at the National Ignition Facility (NIF)

successfully demonstrated cross-beam energy transfer (CBET) mitigation
in polar direct drive (PDD)
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* The first wavelength-detuning experiments measured changes in shape,
shell trajectory, and scattered light as predicted by simulations

— e.g., the predicted equatorial mass accumulation was observed,

which is a by-product of efficient equatorial drive with non-optimal
spot shapes and a nearly “round” shell in PDD

 The successful NIF wavelength-detuning experiments lay the foundation

for future advances: larger AAy, multiple wavelengths, flexible wavelength
distribution, optimized spot shapes, etc.
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The majority of CBET occurs over the equatorial region in PDD
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e CBET reduces the laser drive by as much as 30%, making CBET mitigation the most important design issue
e Equatorial beams dominate the CBET interaction in PDD

e Wavelength detuning and spot-masking apodization (SMA) significantly mitigate CBET and provide a path
for higher convergence
— these combined mitigation methods can be used on symmetric direct drive (SDD) and PDD
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Cone swapping in one hemisphere on the NIF induces the desired wavelength
difference around the equator
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Port-color arrangement Port-color repointing; normal PDD

Will not
mitigate
CBET

._." Indicates quad-split ports

 Two colors are assigned in the NIF’s current configuration: Cones 1 and 2 are red shifted;
Cone 3 is blue shifted

e When ports are repointed in the typical PDD manner, identical colors cover the equator

— this configuration will not mitigate CBET
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Cone swapping in one hemisphere on the NIF induces the desired wavelength
difference around the equator
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Port-color arrangement Port-color repointing; after swap

Hemispheric
AAg

._." Indicates quad-split ports

e Only a modest AAly,=+2.3 A (UV) detuning is available in the current configuration
— mitigation strategies for armor-glass metal clips will alleviate this constraint

e Cone swapping in one hemisphere was necessary to induce a wavelength difference over the equator
— side effect is an asymmetric configuration with nonideal equatorial spot shapes
___ —areconfiguration of the fiber front end will alleviate this constraint
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The first cone-swapping wavelength-detuning experiments on the NIF
demonstrated CBET mitigation

UR
LLE

NIF cone-swapping AAg campaign: Simulation Experiment
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Increased absorption by means of wavelength detuning
enhances the equatorial shell trajectory as predicted
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Backlit average shell-radius Backlit equatorial shell-radius
simulation versus measurement simulation versus measurement
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Measured self-emission images show similar morphology
and late-time higher compression effects
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TC13199 *P. B. Radha et al., Phys. Plasmas 23, 056305 (2016).
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Hemispheric wavelength detuning mitigates CBET
and consequently reduces scattered light
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Scattered-light diagnostic
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Hemispheric wavelength detuning mitigates CBET
and consequently reduces scattered light
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Scattered-light diagnostic
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Hemispheric wavelength detuning mitigates CBET
and consequently reduces scattered light
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Measured and simulated chirped-scattered-light data are in good agreement
and show decreased scattered light for active detuning
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Summary/Conclusions

Initial wavelength-detuning experiments at the National Ignition Facility (NIF)

successfully demonstrated cross-beam energy transfer (CBET) mitigation
in polar direct drive (PDD)
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* The first wavelength-detuning experiments measured changes in shape,
shell trajectory, and scattered light as predicted by simulations

— e.g., the predicted equatorial mass accumulation was observed,

which is a by-product of efficient equatorial drive with non-optimal
spot shapes and a nearly “round” shell in PDD

 The successful NIF wavelength-detuning experiments lay the foundation

for future advances: larger AAy, multiple wavelengths, flexible wavelength
distribution, optimized spot shapes, etc.
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Wavelength-detuning CBET mitigation for polar and symmetric direct drive
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Experiment Simulation
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Measured and simulated chirped-scattered-light data are in good agreement
and show decreased scattered light for active detuning
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Laser-energy coupling loss caused by CBET can be mitigated in different
domains that can be combined
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e Spatial domain (reduction of the interaction volume)
— dynamic spot-shape changes; “zooming”
- reduces on-target energy, induces long-wavelength nonuniformity, and increases imprint
— spot-shape apodization
- static spot-shape design tailored to the target
- use optimal super-Gaussian shape while not altering imprint

e Spectral domain (wavelength detuning)
— detuning shifts resonances into lower interaction volumes
— does not induce spot-shape distortion or imprint
— all required technologies exist, i.e., no R&D; low risk
— will cause system-wide optics upgrades and downtime; high cost
— detuning is more effective in PDD

e Temporal domain
— time multiplexed pulses reduce interaction-time overlap
— requires short pulses to minimize affect on hydrodynamics

— causes increased peak power
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The interaction of crossed laser beams within an expanding
plasma causes CBET between beams
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* This stimulated Brillouin scattering (SBS)-based interaction leads to a resonance condition for
transferring energy between a pump ray and a probe ray by means of an ion-acoustic wave k,*

V .
K fluid

pump .
kabe

ka = kpump_kprobe

* The resonance condition peaks when the matching condition is met

n = (a)pump _wprobe) —Ka * Viid
kalCa {17>0;gain
1n<0;loss

TC11306b *C. J. Randall, J. R. Albritton, and J. J. Thomson, Phys. Fluids 24, 1474 (1981).




The CBET effect is modeled by generalizing collinear interacting plane waves
to include arbitrary incidence angles and polarization*
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e The exponential CBET gain or loss factor is given by

~ e2  ng Ao (Z)
dTXBT - Cpol c3me 1 - n’e <Z> Te + 3T| P(ﬂ) Ipump ds
ASR
P(n) = NV a 5 Resonance function;

(mva)2+(1-n2)° P=+1/v, whenmatched; i.e.,n=+1

Matching condition
0 - — K. Vi
n = ( pump lp(rob:) a Yfluid n> 0: gain

‘ a‘ a n <0;loss

* k%

A

* Random polarization {,, is included using either a constant 1/2 factor or 1/4 {1 + [Kpump * kprobe]z}

* Probe energy is gained or lost as E,[e97Bs edTceer —1] in a cell

*C. J. Randall, J. R. Albritton, and J. J. Thomson, Phys. Fluids 24, 1474 (1981).
**ASR = angular-spectrum representation
***P. Michel, LLE/LLNL Meeting (May 2014).
TC11307b 1IBS = inverse bremsstrahlung




The CBET interactions can be grouped roughly
into two modes
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* The laser-beam interaction for directly driven targets (symmetric or
PDD) covers a wide variety of angles, frequencies, and directions

— refraction, chirping, and multibeam geometry are responsible

Sidescatter mode Backscatter mode

Pump beam

///

" CBET causes probe rays
to extract energy from
high-intensity pump rays

Probe beam
e Similar to the ring energy transfer

used for NIF indirect-drive ignition (IDI) The primary CBET mode that
 Has minimal impact on absorption reduces energy absorption

TC11305e
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The sidescatter mode causes an inbound beam-to-beam CBET exchange
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e The sidescatter mode occurs when both beams are inbound or outbound

Sidescatter mode Matching condition
Aw = @ pump ~ Pprobe = ‘ ka ‘ Ca+kKa* Viiid
lim - Aw —|k,|ca McosO,
Vfluid Viiuia ~Mcar ‘ ka ‘ Ca
kprobe
kpump Vfiuid
o
ka = Kpump— Kprobe ka

* The resonance condition still peaks where the fluid is supersonic (small Aw)

* The \ k, \ is much smaller, however, and the angle Gka can be near orthogonal,
which implies that the k, * Vj,ig term no longer dominates

— the sign of the Aw can now determine gain/loss for smaller values
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The backscatter mode dominates the CBET loss for directly driven targets
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* The backscatter mode occurs for opposing beams
Backscatter mode

Matching condition

Pump beam
Aw = @ pump ~ PDprobe = ‘ ka ‘ Ca+Ka* Vhid
Vi p =

[> CBET causes probe rays fluid Vilia ~Mcar ka|ca
N to extract energy from

'I;arget high-intensity pump rays
crit
Vilui
ka = Kpump—Kprobe\ |Kpump e Ok
a
ka

Probe beam

o

e The resonance condition peaks where the fluid is supersonic (small Aw)

* As the frequency difference increases, the resonance condition shifts to lower/higher sonic speeds
depending on the sign (e.g., M = {0.4,1.6} for +6-A UV)
— dominated by the k, * Vyj,ig term; its sign determines whether there is gain/loss

— frequency difference cannot alter the gain/loss unless it can counter the large
ka ® Viuig term (e.g., 20-A UV)




Successful wavelength detuning shifts the resonance
location sufficiently to mitigate CBET
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When probe rays are blue-shifted, the
resonance shifts to a higher Mach
number where intersecting probe rays
are negligible

Pump beam

When probe rays are red-shifted,
the resonance shifts to a lower Mach

number where probe rays are blocked
and/or have negligible intensity

CBET causes probe rays

to extract energy from
high-intensity pump rays
\ Probe beam

e The magnitude of AAy determines the mitigation duration
— works for both symmetric and PDD
— tailoring the spot shape will help limit the required AAg

Parabolic locus
of turning points
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The simulated shell trajectories indicate measurable differences detectable
with the gated x-ray framing camera
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e At 900 ps, the shell radius is 32 um smaller for wavelength detuning
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