Comparing Ray-Based and Wave-Based Models of Cross-Beam Energy Transfer

LPSE simulation of two crossing beams in a density and flow gradient

R. K. Follett
University of Rochester
Laboratory for Laser Energetics

58th Annual Meeting of the American Physical Society
Division of Plasma Physics
San Jose, CA
31 October–4 November 2016
Summary

A wave-based cross-beam energy transfer (CBET) model (LPSE-CBET) is used as a platform to test the accuracy of ray-based CBET models.

- Ray-based and wave-based CBET show good agreement when the assumptions made in the ray-based model are satisfied.
- Laser speckle can amplify CBET gains when the angle between the interacting beams is small.
- The CBET interaction between speckled beams generates larger density perturbations than the interaction between plane waves.
Collaborators

D. H. Edgell, D. H. Froula, V. N. Goncharov, I. V. Igumenshchev,
J. G. Shaw, and J. F. Myatt

University of Rochester
Laboratory for Laser Energetics
Ray-based CBET models calculate CBET by considering pairwise interactions between rays.

\[\frac{dI_i}{d\ell} = - \sum_j I_j \times L_{ij}^{-1} \]

\[L_{ij}^{-1} = 5.88 \times 10^{-2} \frac{I_j \lambda}{T_e (1 + 3 T_i / Z T_e)} \frac{n_e}{n_c} \frac{\omega_s}{\nu_i} P(\eta_{ij}) \]

\[P(\eta) = \frac{\nu_i^2 \eta}{(\eta^2 - 1)^2 + \nu_i^2 \eta^2} \]

\[\eta_{ij} = \frac{\omega_j - \omega_i - (k_j - k_i) \cdot u}{\omega_s} \]

Assumptions:

- Small ion-acoustic waves (IAW’s) \((\delta n/n \ll 1)\)
- Plane-wave approximation
- Strong-damping limit (IAW’s do not propagate)
- Wentzel–Kramers Brillouin (WKB) approximation

LPSE solves for the enveloped electric-field vector and the ponderomotively driven ion-density perturbations using fewer approximations than ray-based CBET models.
LPSE solves for the enveloped electric-field vector and the ponderomotively driven ion-density perturbations using fewer approximations than ray-based CBET models.
Ray- and wave-based CBET models show excellent agreement when the assumptions made in the ray-based model are satisfied.
Ray- and wave-based CBET models show excellent agreement when the assumptions made in the ray-based model are satisfied.
Laser-beam speckle can cause CBET gains to differ from predictions based on the plane-wave approximation.
The CBET gain is sensitive to beam speckle for gains $\gtrsim 1$ and relative beam angles of $\lesssim 15^\circ$.
Speckled beams can generate larger density perturbations than plane-wave beams even when the CBET gain is not modified.

Enhanced density perturbations could lead to earlier saturation of CBET than would be predicted using a plane-wave approximation.
Summary/Conclusions

A wave-based cross-beam energy transfer (CBET) model (LPSE-CBET) is used as a platform to test the accuracy of ray-based CBET models.

- Ray-based and wave-based CBET show good agreement when the assumptions made in the ray-based model are satisfied.
- Laser speckle can amplify CBET gains when the angle between the interacting beams is small.
- The CBET interaction between speckled beams generates larger density perturbations than the interaction between plane waves.
Campaign SBS6, SBS21:SBS90, homogeneous at $n_e/n_e = 0.1$, nui = 0.01

- Speckled beam
- Plane wave

<table>
<thead>
<tr>
<th>Angle</th>
<th>Gain</th>
<th>Intensity ($\times 10^{14}$ W/cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td></td>
<td>5 15 25</td>
</tr>
<tr>
<td>4.99°</td>
<td></td>
<td>5 15 25</td>
</tr>
<tr>
<td>10°</td>
<td></td>
<td>5 15 25</td>
</tr>
<tr>
<td>15.04°</td>
<td></td>
<td>5 15 25</td>
</tr>
<tr>
<td>30.01°</td>
<td></td>
<td>5 15 25</td>
</tr>
<tr>
<td>59.97°</td>
<td></td>
<td>5 15 25</td>
</tr>
<tr>
<td>90°</td>
<td></td>
<td>5 15 25</td>
</tr>
</tbody>
</table>