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Bang time, 2.55 ns

Offset = 10.5 nm
vice = 0.65 nm
5.3% power imbalance
8-nm mispointing
5-ps mistiming
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Simulations indicate that high-adiabat cryogenic implosion performance  
on OMEGA is dominated by target offset and ice roughness

•	 Cryogenic targets were imploded with a minimum shell adiabat of a ~ 7,  
with smoothing by spectral dispersion (SSD) on and off, and with moderate- 
and high-intensity pulses

•	 2-D simulations indicate that the primary loss of yield is a result of a reduction 
in the hot-spot volume caused by ice roughness and target offset

•	 High-adiabat experiments and simulations confirm that the shell remains 
integral despite laser imprint
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Cryogenic targets were imploded on a high adiabat to prevent shell breakup 
as a result of imprint and to explore a “1-D” regime*

•	 The predicted minimum adiabat is ~7, much higher than that of designs that scale to ignition

•	 These implosions use a single ~10-TW picket for low-mode growth with a convergence ratio (CR) 
of 13 and an in-flight aspect ratio (IFAR) of 15

•	 A comparison with high-intensity shots (I ~ 1015 TW cm–2) shows minor indications  
of intensity-dependent effects, such as ~10% increase in hot-spot size and ~6% reduction in tR
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*R. Betti et al., PO5.00008, this conference.
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Imprint as a result of single-beam nonuniformities is expected  
to have a small effect on target performance

•	 Turning off SSD in warm-target implosions 
reduces the bang time and lengthens the burn*

•	 Shots based on the same pulse were performed 
with and without SSD

•	 Small changes in the pulse energy and spot size 
account for the majority of the 55-ps difference  
in bang times

•	 The burn duration [full width at half maximum 
(FWHM)] in both experiment and simulation  
is nearly identical when SSD is turned off
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*S. X. Hu et al., Physics of Plasmas 23, 102701 (2016).
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Drive nonuniformities have a modest impact  
on target yield in 2-D simulations

•	 A 5-ps beam mistiming, 8-nm mispointing, and 5.3% power imbalance were estimated experimentally
•	 When these are simulated, the yield is degraded 8% relative to a “clean” simulation
•	 The yield is degraded 12% when the power from modes with m ≠ 0 is added  

in quadrature to the m = 0 modes to account, in part, for 3-D mode growth
•	 High-adiabat, low-convergence implosions are expected to have little sensitivity to drive perturbations
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The power imbalance must be increased to over 20% to reproduce the experimental yield.

Port geometry only
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Shot 80807
Initial rms = 0.66 nm
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Ice roughness has a small impact on target performance  
for a ~ 7 implosions 

•	 Despite the large , = 2, the hot-spot volume is largely unchanged, 
leading to almost no reduction in yield

•	 The yield reduction relative to clean is 6%
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Shot 80807
10.5-nm offset
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Target offset is predicted to be the leading cause  
of target-performance degradation

•	 A simulation with target offset has a 12% degradation of yield relative to a “clean” simulation, 
approximately the same as all laser imbalances put together, with 10% power imbalance

•	 Simulations including beam mistiming, mispointing, and 5.3% power imbalance, with measured 
ice roughness and target offset, show a reduction in yield of 17% from the clean yield

•	 Even when the power imbalance is doubled to 10%, the yield degradation is just 26%
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Laser imbalances (10%), offset, ice roughness
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Burn widths are well reproduced by simulation

•	 Long-wavelength perturbations lead to a small amount of burn truncation
•	 2-D ion temperatures are closer to experimental values
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DRACO simulations show hot-spot sizes comparable to those  
determined by integrated x-ray images

•	 The gated monochromatic x-ray imager (GMXI) was used to observe 
4.5- to 6-keV x rays

•	 The hot-spot size is affected by the amount of mass ablated  
into the hot spot disruption

•	 The simulated hot-spot shape is more oblate than the GMXI image
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High-adiabat implosions are being used to identify physical processes  
that must be better modeled or added to simulation

•	 Simulations reproduce expected trends but over-predict target yield

•	 1-D modeling of the cryogenic implosion using the preheat inferred from the plastic-target 
implosions indicates an ~10%* reduction of areal density and a 5% reduction of yield

•	 The power imbalance must be increased by 4× over the measured level to account  
for the observed yield degradation

•	 Other sources of performance degradation include
–	3-D effects, notably asymmetric hot-spot fluid flow** 
–	perturbations caused by the target mounting stalk,  

including possible ice-surface perturbations†

–	shell disruption caused by surface target debris 
–	uncertainties in physics modeling

•	 Simulations will be performed modeling the first two of these, and efforts are underway  
to improve target characterization to the submicron level
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	 *	J. A. Delettrez et al., UO9.00015; A. R. Christopherson et al., NO5.00007, this conference.
	 **	K. S. Anderson et al., NO5.00011, this conference.
	 †	D. Cao et al., TO5.00012, this conference.
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Summary/Conclusions

Simulations indicate that high-adiabat cryogenic implosion performance  
on OMEGA is dominated by target offset and ice roughness

•	 Cryogenic targets were imploded with a minimum shell adiabat of a ~ 7,  
with smoothing by spectral dispersion (SSD) on and off, and with moderate- 
and high-intensity pulses

•	 2-D simulations indicate that the primary loss of yield is a result of a reduction 
in the hot-spot volume caused by ice roughness and target offset

•	 High-adiabat experiments and simulations confirm that the shell remains 
integral despite laser imprint
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CBET has a modest effect on the spectrum of drive nonuniformities

•	 In CBET, an ion-acoustic wave couples 
incoming and outgoing laser beams, removing 
energy from incoming rays, and reducing the 
overall laser drive by as much as 40%

•	 CBET occurs nearly uniformly around the target

•	 CBET increases the deposition-weighted radius, 
resulting in a larger smoothing volume for drive 
perturbations
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