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Summary

Hot-electron transport in direct-drive cryogenic implosions  
is studied by comparing hard x rays (HXR’s) between  
all-plastic and multilayered implosions

• Differences in HXR signals between mass-equivalent all-CH  
and multilayered implosions can be used to infer hot-electron 
energy deposition into the payload

• Experiments utilizing Cu-doped payloads of varying thicknesses 
indicated that hot-electron deposition into the payload increases 
proportionally with the payload mass

• Post-shot analysis of these experiments predicted a 10% to 20% 
degradation in areal density caused by hot-electron preheat  
for an a = 4 implosion irradiated at an intensity of 9 × 1014 W/cm2
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The hot-electron energy deposited into the DT layer of cryo implosions  
is routinely inferred by comparing the cryo HXR* signal with  
the HXR signal of a mass-equivalent all-CD implosion
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• Both implosions have the same pulse shape and are predicted to exhibit identical coronal conditions
 – this implies the source of hot electrons generated from two-plasmon decay (TPD) is the same in 
both implosions

The objective is to use the difference in the HXR signal to quantify  
hot-electron deposition into DT and the tR degradation from preheat.
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If the hot-electron source is the same, the energy deposited into the DT  
can be inferred by subtracting the cryo HXR from the all-CD HXR 
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• EDT = energy deposited into the DT by the hot electrons

• ECD
payload = energy deposited into the CD payload by the hot electrons EDT.   

• ECD
corona = energy deposited into the CD corona by the hot electrons

:

–

–
DT preheat formula E

E
E

E
E

E E
DT

a

lost

rad

CD

payload

lost

rad

DT

rad
ll CD

rad
cryo

=
-

e eo o



TC12371a

Although the preheat formula predicts electron energy into the total DT,  
the tR degradation depends on electron energy into the unablated DT
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• The difference in the HXR signal predicts electron energy into the total DT

• A fraction of DT mass is ablated during an OMEGA implosion

Ablated DT

Unablated DT (approximately 2/3 of total DT mass)

Coronal CD
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An experimental platform that utilized Cu-doped payloads  
of varying thicknesses was developed to measure where  
the hot electrons deposit their energy

The HXR increases in Cu-doped targets.
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Half of OMEGA images indicate that the TPD activity in the corona  
is identical between the all-CH and CH(Cu) payload implosions
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This data supports the assumption that the hot-electron source 
between the all-CH and multilayered implosions is the same.
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The fraction of hot electrons coupled into the payload  
increases proportionally with payload thickness

• Large uncertainties are caused by hot-electron temperature (~50%)  
and hard x-ray diagnostic (HXRD) calibration (~20%)

• Since the unablated mass is 2/3 of total DT mass, we expect 8!3 J 
(out of 12!5 J) is coupled into the unablated DT for 77064
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82058 
[2.9 nm CH(Cu)]

82060 
[5.5 nm CH(Cu)]

77064 
(50 nm DT)

Total energy into hot electrons (J) 30!15 J 28!11 J 28!12 J

Energy into payload (J) 6!3 J 13!5 J 12!5 J
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Hot-electron preheat and areal-density degradation are determined  
from 1-D LILAC simulations that include hot-electron transport*

The 8!3 J deposited into the unablated DT leads  
to a 10% to 20% degradation in areal density.
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Summary/Conclusions
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Hot-electron transport in direct-drive cryogenic implosions  
is studied by comparing hard x rays (HXR’s) between  
all-plastic and multilayered implosions

• Differences in HXR signals between mass-equivalent all-CH  
and multilayered implosions can be used to infer hot-electron 
energy deposition into the payload

• Experiments utilizing Cu-doped payloads of varying thicknesses 
indicated that hot-electron deposition into the payload increases 
proportionally with the payload mass

• Post-shot analysis of these experiments predicted a 10% to 20% 
degradation in areal density caused by hot-electron preheat  
for an a = 4 implosion irradiated at an intensity of 9 × 1014 W/cm2
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The preheat formula correctly predicts the energy deposited  
into DT regardless of the hot-electron temperature,  
source divergence, and transport model
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• The hot-electron temperature varies from 40 to 80 keV

• The divergence angle varies from 0r to 4r

• All three transport models were used here
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Hot-electron preheat and areal-density degradation are determined  
from 1-D LILAC simulations that include hot-electron transport*
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• The 1-D code LILAC uses a straight-line model, where electrons  
lose energy according to a slowing-down formula**

• The radiation emitted by hot electrons is calculated from National 
Institute of Standards and Technology tables

• The hot-electron source is Maxwellian with the measured temperature

• Electrons are born at the quarter-critical surface

• The fraction of laser energy into suprathermals and the source 
divergence angle are constrained by the two measured HXR signals

• Electrons at the edge of the simulation are reflected back  
into the target at a random angle

* J. A. Delettrez et al., UO9.00015, this conference.
** A. A. Solodov and R. Betti, Phys. Plasmas 15, 042707 (2008).
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The hot-electron energy deposition per unit mass is approximately constant  
in LILAC simulations* that include hot-electron transport
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* J. A. Delettrez et al., UO9.00015, this conference.
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